

Progetto coordinato da

CONFINDUSTRIA CERA

Realizzato da

Gruppo di Lavoro								
☐ Benedetta Ferrari								
☐ Riccardo Pascolo								
☐ Elisa Franzoni								
☐ Andrea Canetti								
☐ Mauro Rullo								
☐ Francesca Ebaldi								
☐ Gabriele Lelli								
Layout grafico e impaginazione								
☐ Benedetta Ferrari								

Industrie produttrici di piastrelle di ceramica Fattori di impatto e prestazioni ambientali

Aggiornamento dati 2024

Questo studio è stato realizzato nell'ambito dell'Accordo di Collaborazione per l'elaborazione di dati di rilevanza ambientale stipulato tra Regione Emilia-Romagna e Confindustria Ceramica.

© 2023 CONFINDUSTRIA CERAMICA

Viale Monte Santo, 40 - 41049 Sassuolo (MO) – Italy Tel. +39 0536 818111 - Fax +39 0536 806828 www.confindustriaceramica.it economia@confindustriaceramica.it

INDICE

PRESENTAZIONE	PAGINA
1. STRUTTURA, CONTENUTI E INDICATORI DEL RAPPORTO	5
2. IL CAMPIONE DI STABILIMENTI E GLI ANNI DI RIFERIMENTO	6
3. LA BASE DI DATI: CONTENUTI, STRUTTURA, UTILIZZO	7
4. ANDAMENTI E TENDENZE DEI 35 INDICATORI NEGLI ANNI 2010-2024, PER LE DIVERSE CLASSI DI PRODOTTO/CICLO	8
4.1 Emissioni in atmosfera	8
4.2 Acque e bilancio idrico	18
4.3 Uso dei materiali	20
4.4 Consumo di energia	22
	25

ALLEGATI

- ALL. 1. CLASSIFICAZIONE DEGLI STABILIMENTI IN FUNZIONE DEL PRODOTTO E DEL CICLO DI FABBRICAZIONE
- ALL. 2. QUADRO SINOTTICO DEI 35 INDICATORI UTILIZZATI IN QUESTO RAPPORTO, E DELLE RISPETTIVE FORMULE DI CALCOLO
 2.1 DEFINIZIONI
 2.2 FORMULE DI CALCOLO
- ALL. 3. ANNO 2024: RACCOLTA DEGLI INDICATORI ENERGETICI ED AMBIENTALI COMUNICATI PER SINGOLOSTABILIMENTO E PER CLASSEDI PRODOTTO/CICLO. ANDAMENTO DEGLI INDICATORI NEL PERIODO 2010-2024

Presentazione

Questo volume è l'aggiornamento, all'anno 2024, della base di dati ricavata dall'elaborazione delle comunicazioni dei dati ambientali (Report AIA) che le aziende inviano annualmente alla Regione Emilia-Romagna.

Tali rapporti annuali, previsti dalla DGR 152/2008, costituiscono una fonte preziosa di informazioni ed al fine di valorizzarli adeguatamente, la Regione Emilia-Romagna e Confindustria Ceramica hanno sottoscritto un "Accordo di Collaborazione per l'elaborazione di dati di rilevanza ambientale", che ha reso possibile la realizzazione del Rapporto 2010-2013¹ (al quale si rimanda per le informazioni sull'impostazione metodologica e per il dettaglio dei dati relativi agli anni precedenti).

Il presente Rapporto aggiorna quindi all'anno 2024 i valori dei 35 indicatori individuati nel Rapporto 2010-2013 e nei successivi aggiornamenti realizzati annualmente a partire dal 2014¹.

Ciascun indicatore è riportato per l'intero periodo di analisi (2010-2024) fornendo così degli andamenti rappresentativi sia dello stato dell'arte che dell'evoluzione dei livelli di impatto/prestazione in tema di ambiente ed energia del settore delle piastrelle di ceramica.

L'iniziativa si collega ai precedenti studi settoriali realizzati in collaborazione con il Centro Ceramico, quali il Rapporto Integrato 1998² e il Rapporto Integrato 2008³. Queste pubblicazioni, frutto di iniziative di Confindustria Ceramica, sono anche importanti strumenti di comunicazione finalizzati a valorizzare gli sforzi e gli investimenti fatti dall'industria italiana delle piastrelle di ceramica verso la protezione dell'ambiente, il risparmio energetico e la valorizzazione del territorio.

Nel 2024 la produzione italiana di piastrelle di ceramica, realizzata per l'86,7% nel distretto tra le province di Modena e Reggio Emilia, si è attestata a 369,8 milioni di metri quadrati, con una flessione dell'1,1% rispetto al 2023. Le vendite, al contrario, hanno registrato una crescita del 2,5% sull'anno precedente, trainate in particolare dalle esportazioni verso Nord America e Asia, che hanno compensato le difficoltà riscontrate nei mercati europei, penalizzati dalla contrazione degli investimenti nell'edilizia residenziale. Il 2024 è stato inoltre segnato da sfide di natura energetica, politica e commerciale. Gli elevati costi dell'energia in Italia rispetto al resto d'Europa hanno inciso in modo significativo sulla competitività delle imprese, riducendone i margini operativi. A questo si è aggiunto il peso crescente del sistema europeo ETS, che ha comportato ulteriori oneri per le aziende, ed una concorrenza sleale da parte di Paesi extra-UE, favorita da politiche e da standard ambientali e sociali meno rigorosi rispetto a quelli applicati in Europa.

¹Rapporto 2010-2013: Industrie produttrici di piastrelle di ceramica – Fattori di impatto e prestazioni ambientali (Confindustria Ceramica, 2015) e successivi aggiornamenti 2014, 2015, 2016, 2017, 2018, 2019 e 2020. Il Rapporto e gli aggiornamenti sono scaricabili dal sito della Regione Emilia-Romagna: https://ambiente.regione.emilia-romagna.it/it/valutazioni-ambientali-e-autorizzazioni/autorizzazioni/autorizzazione-integrata-ambientale-aia/prestazioni-ambientali-delle-industrie-ceramiche

²1° Rapporto Integrato Ambiente, Energia, Sicurezza-salute, Qualità (Assopiastrelle, 1998).

³2° Rapporto Integrato Ambiente, Energia, Sicurezza-salute, Qualità e Responsabilità Sociale d'Impresa (Confindustria Ceramica, 2008).

1. Struttura, contenuti e indicatori del Rapporto

Oggetto di questo Rapporto sono le aziende produttrici di piastrelle di ceramica della Regione Emilia-Romagna; di tali aziende vengono studiati diversi fattori di impatto e di prestazione ambientale, relativi alle seguenti aree tematiche:

Emissioni in atmosfera
Acque e bilancio idric
Uso dei materiali
Consumo di energia

Per la valutazione e la comunicazione dei livelli d'impatto e delle prestazioni ambientali sono stati elaborati **35 indicatori**, calcolati, per ciascuno stabilimento, sulla base delle comunicazioni annuali inviate alla Regione Emilia-Romagna. Gli indicatori, elencati nell'Allegato 2, sono raggruppabili in due categorie:

Indicatori di intensità (o di dimensione
Indicatori di prestazione.

Gli **indicatori di intensità** (o di dimensione), classificano gli stabilimenti in base al loro contributo "assoluto", rispettivamente:

se a	l loro contributo "assoluto", rispettivamente:
	all'emissione di sostanze inquinanti in atmosfera,
	al consumo idrico,
	alla produzione di rifiuti/residui,
	al consumo di energia (in particolare, combustibile ed elettricità).

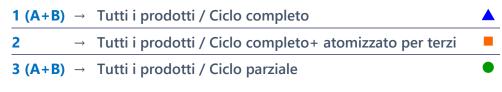
Un livello elevato di tali indicatori è normalmente associato alle unità produttive di più grande dimensione e non evidenzia implicazioni sull'efficienza dei processi.

Gli **indicatori di prestazione** corrispondono, in generale, a flussi specifici di materiali ed energia, riferiti all'unità di prodotto "versato a magazzino", dunque destinata ad essere immessa sul mercato.

Questi flussi specifici dipendono dalla tecnologia, dagli impianti, dal controllo del processo produttivo e dalle tecniche adottate.

Ad esempio, si considerino le emissioni in atmosfera fra due stabilimenti in cui viene fabbricata la stessa tipologia di prodotto: quello che presenta il fattore di emissione di valore più basso, risulta essere il più efficiente; quindi caratterizzato da più elevate prestazioni ambientali.

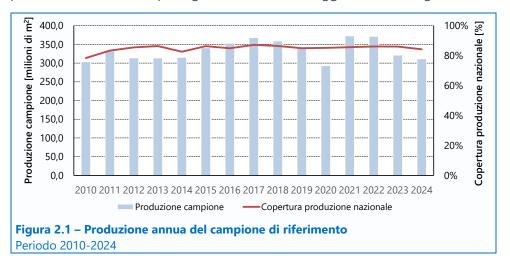
Gli indicatori di prestazione consentono dunque di valutare e giudicare qualità e prestazioni delle tecniche e tecnologie adottate, nonché la gestione della produzione.


Non tutti i 35 indicatori sono sempre disponibili per tutti gli stabilimenti inclusi nel campione. Per alcuni stabilimenti, infatti, l'AlA (Autorizzazione Integrata Ambientale) non prevede il monitoraggio di alcuni parametri associati ai 35 indicatori.

Per tali parametri mancanti, le popolazioni di dati delle corrispondenti classi di prodotto/ciclo saranno inevitabilmente ridotte.

2. Il campione di stabilimenti e gli anni di riferimento

Gli stabilimenti costituenti il campione di indagine sono tutti ubicati nella Regione Emilia-Romagna. Nel presente aggiornamento 2010-2024 del Rapporto, è stata mantenuta un'importante modifica, introdotta nel precedente rapporto (2010-2015); essa consiste nell'accorpamento di tutti gli stabilimenti nelle tre classi principali di prodotto/ciclo: classe "1(A+B)", classe "2", classe "3(A+B)". Tale modifica si è resa necessaria in quanto la diversificazione delle tipologie produttive di piastrelle di ceramica è andata diminuendo nel tempo, a favore del grès porcellanato (smaltato e non), prodotto divenuto ormai dominante, a scapito di tutte le altre tipologie di piastrelle. Ciò ha comportato una diminuzione della numerosità del campione, suddiviso per ogni singola sotto-classe, tale da non consentire un'elaborazione statistica significativa dei dati raccolti, soprattutto per le due sotto-classi 1B e 3B; si è quindi deciso di eliminare queste due sotto-classi, presenti nel Rapporto 2008 e mantenute fino all'aggiornamento 2014.


Le 3 classi principali sono quindi:

Nella tabella in Allegato 1, alle diverse classi di prodotto/ciclo è associato il numero di stabilimenti attribuito per ognuno dei 15 anni oggetto di indagine. In particolare, la classe "2" pesa per il 44% sulla produzione finale del 2024, seguita dalle classi "1(A+B)" e "3(A+B)" che coprono rispettivamente il 35% e il 21%.

Consistenza del campione: Il campione consta di circa 90 stabilimenti (con qualche variazione da un anno all'altro). La copertura del campione è prossima al 100% degli stabilimenti in attività nel territorio in esame

(Regione Emilia-Romagna). Come indicatore della **rappresentatività del campione**, vengono indicati in **Figura 2.1** la produzione annua degli stabilimenti in esso inclusi e la copertura percentuale rispetto alla produzione nazionale, per ognuno dei 15 anni oggetto dell'indagine:

Nota:

La suddivisione nelle 5 sotto-classi è stata comunque mantenuta per i dati contenuti nelle tabelle dell'Allegato 3, dove sono evidenziati i "Valori individuali dell'indicatore, per ogni singolo stabilimento di ognuna delle 5 sotto-classi di prodotto/ciclo":

- 1A. Grès porcellanato / Ciclo completo
- 1B. Altri prodotti / Ciclo completo
- 2. Tutti i prodotti / Ciclo completo + atomizzato per terzi
- **3A.** Grès porcellanato / Ciclo parziale
- **3B.** Altri prodotti / Ciclo parziale

nelle quali gli stabilimenti costituenti il campione di indagine sono stati classificati in funzione del tipo di prodotto e del ciclo di fabbricazione (nel caso più comune, di stabilimento con diversi prodotti/cicli, l'attribuzione è stata effettuata assegnando la classe corrispondente alla maggiore quota di tipologia produttiva/ciclo, dichiarata).

3. La base di dati: contenuti, struttura, utilizzo

L'aggiornamento della base dati relativa all'anno 2024 costituisce l'Allegato 3 del presente Rapporto: un allegato ricco di informazioni, pur essendo di facile consultazione.

L'allegato è costituito da 35 sezioni, una per ciascun indicatore considerato. Ogni sezione è costituita da due pagine (come esempio si riporta la struttura della sezione relativa all'indicatore i-esimo, **Ni**):

Ni - XIV - Anni 2010-2024→ Andamento temporale del valore medio dell'indicatore di ognuna delle 3 classi principali di prodotto/ciclo: classe 1(A+B), classe 2, classe 3(A+B).

Ni – XIV - Anno 2024 → Valori individuali dell'indicatore per ogni singolo stabilimento di ognuna delle 5 sottoclassi di prodotto/ciclo: classe 1A, classe 1B, classe 2, classe 3A, classe 3B.

Questo aggiornamento 2024, assieme al Rapporto 2010-2023, fornisce una "fotografia" dello stato del settore delle piastrelle di ceramica in ciascuno degli anni oggetto di studio, e contribuisce a individuare le linee di tendenza e le loro evoluzioni nel tempo.

Per tali finalità, tuttavia, occorrono criteri più "globali", rispetto agli "indicatori individuali di stabilimento".

Tenendo conto dell'esigenza di raccordo con precedenti indagini realizzate nel settore, fra le diverse possibilità, si è deciso di utilizzare la media aritmetica degli indicatori di stabilimento relativi a ciascuna classe di prodotto/ciclo per ciascuno dei dieci anni dell'indagine.

Per ogni indicatore e per ciascuna classe di prodotto/ciclo sono state dunque calcolate le medie annuali, riportate poi nel foglio "Ni–XIV–Anni 2010-2024" (i = da 1 a 35) dell'Allegato 3.

Anche sulla base di precedenti studi ed esperienze, si è ritenuto che tali medie annuali possano fornire un valido aiuto alla realizzazione ed alla comprensione del quadro d'insieme delle prestazioni ambientali del settore delle piastrelle di ceramica.

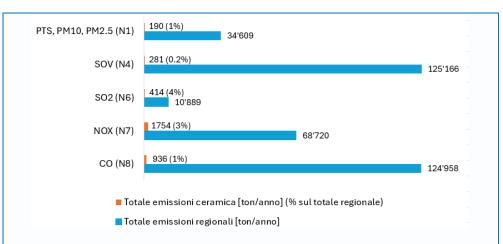
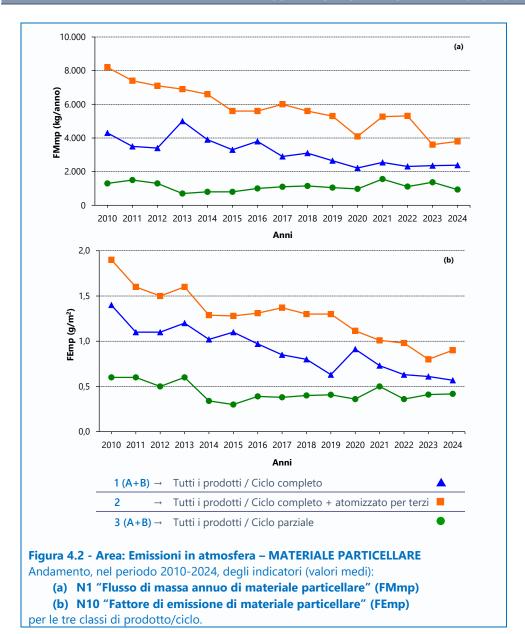
4. Andamenti e tendenze dei 35 indicatori negli anni 2010-2024, per le diverse classi di prodotto/ciclo

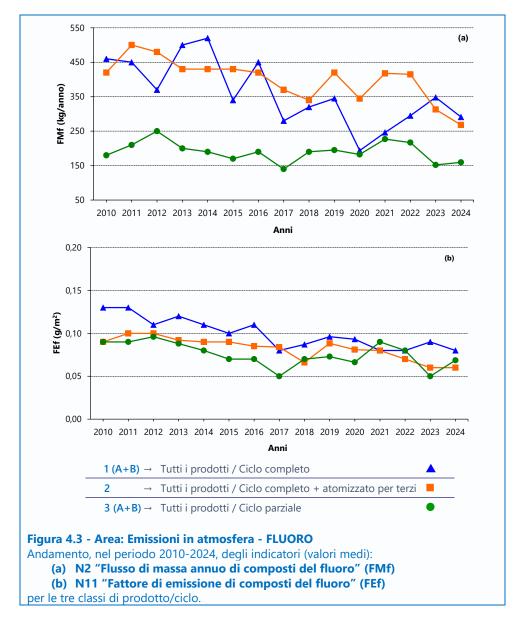
Nel seguito sono riportati e commentati i risultati più significativi delle elaborazioni condotte, articolate per aree tematiche.

4.1. Emissioni in atmosfera

Le **emissioni in atmosfera** sono il fattore d'impatto ambientale sul quale l'attenzione dei legislatori, dell'industria e della ricerca istituzionale si è da più tempo concentrata. In particolare, le nuove sfide introdotte dal Green Deal prevedono una riduzione delle emissioni di CO₂ del 55% entro il 2030 rispetto ai livelli del 1990) ed il raggiungimento della carbon neutrality entro il 2050. Per i settori interessati dal sistema di scambio di quote di emissioni dell'UE (ETS) è inoltre previsto un obiettivo europeo di riduzione del 62% entro il 2030 (rispetto ai livelli del 2005).

Al fine di inquadrare correttamente il peso delle emissioni atmosferiche originate dal comparto ceramico è possibile fare riferimento ai dati⁴ pubblicati dalla Regione Emilia-Romagna nei documenti preparatori del proprio Piano Aria Integrato Regionale (PAIR 2030). In particolare, la tabella seguente analizza nel dettaglio il contributo emissivo attribuibile all'industria ceramica rispetto alle emissioni totali (tonnellate/anno) della Regione Emilia-Romagna per le principali sostanze inquinanti: particolato (PTS, PM10, PM2,5), Sostanze Organiche Volatili (SOV), biossido di zolfo (SO₂), ossidi di azoto (NO_x) e monossido di carbonio (CO).


Figura 4.1 – Area: Emissioni in atmosfera

N1 "Flusso di massa annuo di materiale particellare", N4 "Flusso di massa di SOV" N6 "Flusso di massa di ossidi di zolfo", N7 "Flusso di massa di ossidi di azoto" N8 "Flusso di massa di monossido di carbonio".

Consideriamo ora i due inquinanti atmosferici più rilevanti e caratterizzanti dell'industria ceramica: il materiale particellare (Fig. 4.2) ed i composti del fluoro (Fig. 4.3). In Fig. 4.2, in particolare, sono riportati e confrontati il flusso di massa medio annuo ed il fattore di emissione medio annuo del materiale particellare, con riferimento alle diverse classi di prodotto/ciclo nel periodo 2010-2024. Per quanto concerne l'indicatore di "dimensione", flusso di massa annuo [Fig. 4.2(a)], le diverse classi di prodotto/ciclo si distinguono nettamente rispetto a tale parametro, mostrando un'evoluzione temporale sostanzialmente costante o in lieve diminuzione, come nel caso degli stabilimenti di classe "3", rispetto all'anno precedente. L'andamento del corrispondente fattore di emissione [Fig. 4.2(b)] conferma - anche per questo indicatore "prestazionale" - una significativa correlazione con le diverse classi di prodotto/ciclo e, nel complesso, una evoluzione temporale tendente a una leggera ma costante diminuzione.

⁴ Tabella 7a del Quadro Conoscitivo PAIR 2030, riportante i dati del 2017.

Altro fattore d'impatto ambientale, anch'esso tipico dell'industria ceramica, è l'**emissione di composti del fluoro**, alla cui riduzione i produttori hanno dedicato impegno e risorse significative, a partire dagli anni '70 del secolo scorso. A differenza del materiale particellare, che è presente nelle emissioni in atmosfera di tutte le fasi di produzione della ceramica, il fluoro è un inquinante tipico della fase di cottura.

Il **flusso di massa** [**Fig. 4.3(a)**], nell'anno 2024 si colloca nell'intervallo da 160 a 291 kg/anno, confermando un trend in riduzione rispetto all'anno precedente.

Quanto al fattore di emissione dei composti del fluoro, si richiama l'attenzione sul diagramma di Fig. 4.3(b), il quale evidenzia un trend in leggera diminuzione, dimostrando la costante attenzione delle imprese alla gestione degli impianti di depurazione. Si osservi che il fattore di emissione medio, pari a circa 2,8 mg/kg, risulta ben al di sotto della soglia di eccellenza ambientale di 6 mg/kg, valore stabilito dalla Decisione (UE) 2021/476 relativamente ai criteri per l'assegnazione del marchio Ecolabel.

Di particolare interesse appare oggi, a fronte dei dati degli anni più recenti (anni 2010-2024), esaminare l'evoluzione, a partire dalla fine degli anni '80 del secolo scorso, delle emissioni di materiale particellare e dei composti del fluoro. L'interesse per una sorta di bilancio consuntivo è oggi associato anche al fatto che le prestazioni ambientali dei cicli produttivi hanno subito un significativo miglioramento, favorito dal forte impegno dell'industria nello sviluppo e nell'adozione di tecnologie di produzione "pulite" (o "green", come vengono attualmente definite), associate anche ad

incrementate misure di trattamento delle emissioni ed abbattimento degli inquinanti.

Per una rassegna dettagliata dei risultati ottenuti, e delle tecniche e tecnologie che li hanno prodotti, si veda il manuale "Piastrelle ceramiche e ambiente"⁵, sviluppato e sostenuto da tutti gli attori in precedenza citati: l'industria (Confindustria Ceramica), la ricerca istituzionale (Università di Bologna e Centro Ceramico), le autorità e le agenzie regionali (in particolare ARPAE). Si vedano, a tale proposito, anche il primo ed il secondo Rapporto Integrato di settore, pubblicati rispettivamente nel 1998 e nel 2008.

Nelle Fig. 4.4 e Fig. 4.5, relative rispettivamente agli inquinanti "Materiale particellare" e "Composti del Fluoro", il campo di indagine del presente Rapporto è stato esteso al periodo dal 1988 al 2024, ed i parametri oggetto di attenzione sono i fattori di emissione medi dei due inquinanti in esame.

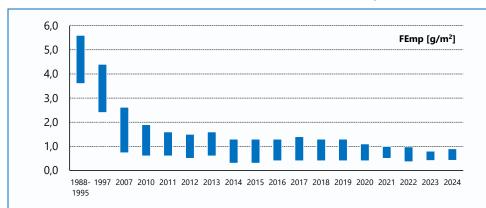


Figura 4.4 – Area: Emissioni in atmosfera – MATERIALE PARTICELLARE Periodo 1988-2024

Fattore di emissione di materiale particellare (FEmp): valori medi annui comprensivi delle diverse classi di prodotto/ciclo.

INDUSTRIE PRODUTTRICI DI PIASTRELLE DI CERAMICA • FATTORI DI IMPATTO E PRESTAZIONI AMBIENTALI

⁵G.Busani, C.Palmonari, G.Timellini – Piastrelle ceramiche e ambiente – Ed. Edi.Cer, Sassuolo, 1995.

□□□□ ANDAMENTI E TENDENZE DEI 35 INDICATORI NEGLI ANNI 2010-2024, PER LE DIVERSE CLASSI DI PRODOTTO/CICLO

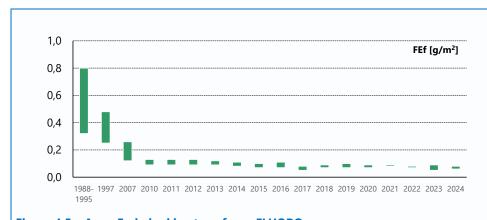


Figura 4.5 – Area: Emissioni in atmosfera - FLUORO

Periodo 1988-2024

Fattore di emissione di composti del fluoro (FEf): valori medi annui comprensivi delle diverse classi di prodotto/ciclo.

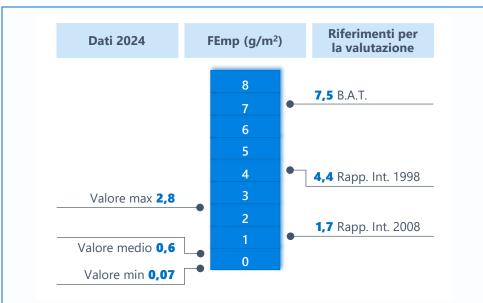
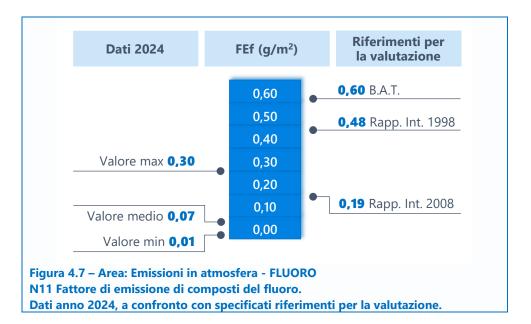
Gli andamenti qualitativi non sono molto dissimili fra i due inquinanti, e si prestano ad un'interpretazione comune.

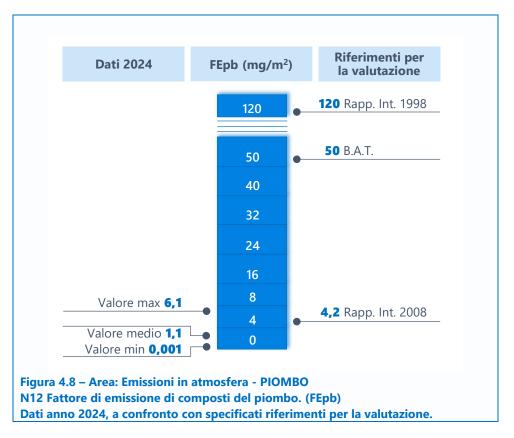
Il primo intervallo di dati – 1988/1995 pubblicato nel 1° Rapporto Integrato – corrisponde alla conclusione della fase cosiddetta del "comando e controllo", caratterizzata da un regime autorizzativo basato sul rispetto di limiti di emissione d'inquinanti, comuni a tutte le aziende ed imposti anche agli impianti di nuova costruzione o profondamente ristrutturati.

Il secondo riferimento temporale (anno 1997) corrisponde all'introduzione di regole diverse di autorizzazione per i nuovi impianti o le ristrutturazioni. Da quegli anni in poi la concessione delle autorizzazioni, finalizzate a ristrutturazioni o modifiche impiantistiche, è stata subordinata alla condizione di <u>non superamento</u> del <u>"carico" inquinante complessivo</u>, emesso prima delle modifiche introdotte.

Evidentemente, ciò ha comportato uno sforzo ed un investimento maggiore dell'industria richiedente, obbligata ad efficaci interventi sia su impianti produttivi e parametri di processo, sia su impianti di depurazione.

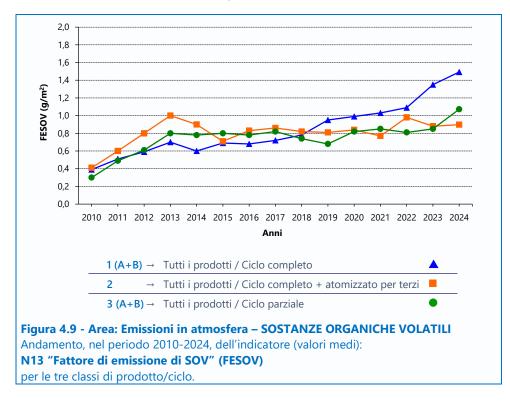
Il risultato di questo impegno è chiaramente leggibile nei diagrammi di **Fig. 4.4** e **Fig. 4.5**, dai quali emerge che il fattore di emissione di entrambi gli inquinanti in esame, negli anni 2010-2024, si attesta su livelli inferiori al 20%, rispetto a quelli di fine '900. Ancora, con riferimento agli inquinanti tipici maggiormente studiati e mantenuti sotto controllo (materiale particellare, composti del fluoro e composti del piombo), è utile considerare alcuni riferimenti per la valutazione delle prestazioni, relativi ai Fattori di Emissione FEmp, FEf e FEpb, mostrati nelle Figure **4.6**, **4.7** e **4.8**.


Figura 4.6 – Area: Emissioni in atmosfera – MATERIALE PARTICELLARE N10 Fattore di emissione di materiale particellare.

Dati anno 2024, a confronto con specificati riferimenti per la valutazione.

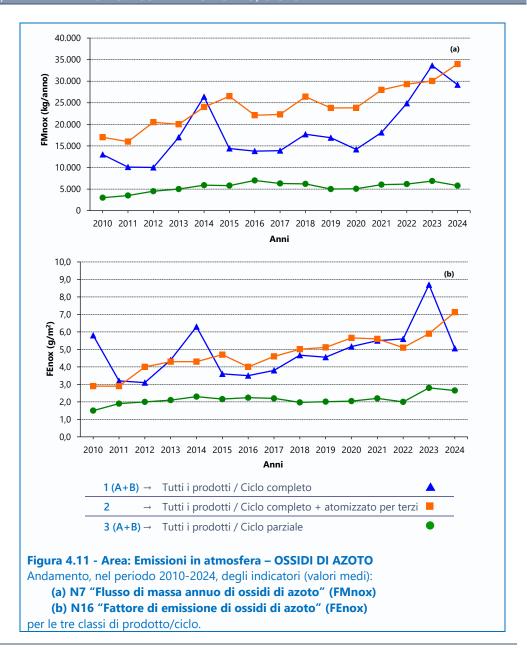
Innanzitutto, è importante sottolineare come il valore massimo rilevato di fattore di emissione di materiale particellare (Fig. 4.6), per tutti gli impianti indagati, risulti inferiore al 40% del valore prescritto dall'analogo riferimento legislativo, costituito dalle BAT di settore.


Analogamente, si può sottolineare come il valore massimo rilevato per il fattore di emissione di fluoro (Fig. 4.7) sia pari al 50%, del corrispondente riferimento legislativo, costituito dalle BAT di settore. Per quanto riguarda il fattore di emissione di piombo (Fig. 4.8) esiste, anche in questo caso, il riferimento legislativo costituito dalle BAT di settore; è quindi possibile notare come il valore massimo rilevato si collochi poco oltre il 12% del valore soglia prescritto dalle BAT.

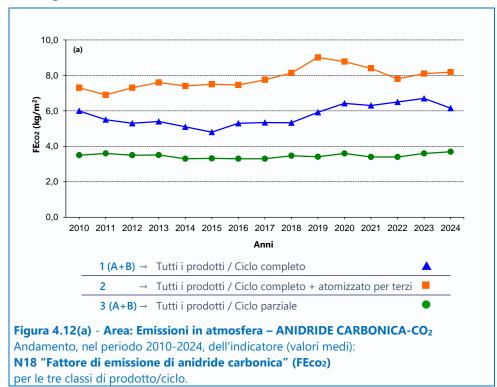
Dunque, confrontando i dati medi 2024 derivanti dalle comunicazioni AIA con i corrispondenti riferimenti costituiti dalle BAT di settore, si ricava un'immediata e documentata conferma del livello di eccellenza raggiunto dall'industria italiana delle piastrelle di ceramica.

Un ulteriore fattore di impatto ambientale, associato alle emissioni in atmosfera e caratterizzato attualmente da un crescente interesse nel settore, è rappresentato dalle emissioni di **Sostanze Organiche Volatili (SOV)** e da composti potenzialmente odorigeni come le **Aldeidi**.

Anche per SOV ed Aldeidi, emesse in atmosfera da processi ceramici, sono stati fissati limiti di concentrazione da parte della Regione Emilia-Romagna; pertanto, già da molti anni, queste emissioni sono incluse nei piani di monitoraggio previsti dalle Autorizzazioni Integrate Ambientali (AIA). Nelle **Figure 4.9 e 4.10** è riportato l'andamento dei **fattori di emissione** negli anni 2010-2024, rispettivamente, per gli indicatori FEsov e FEald.


Dalla Figura 4.9 emerge una tendenza all'aumento dei valori delle SOV nel periodo dal 2010 fino al 2013; è importante sottolineare come tale andamento sia coinciso con il costante e significativo affermarsi, nel settore ceramico, della tecnologia di stampa digitale, ad oggi, ancora l'unica tecnologia disponibile che permette di raggiungere le qualità estetiche

richieste dal mercato. La tendenza cambia decisamente andamento negli anni successivi, evidenziando una significativa diminuzione nel 2014, per poi giungere al 2018 ad una situazione sostanzialmente stabile, con oscillazioni più o meno ampie nelle tre classi. Dal 2019 ad oggi si osserva soprattutto per la classe "1(A+B)" un aumento progressivo delle SOV correlata probabilmente ad un uso maggiore della decorazione e ad una diversificazione delle materie prime utilizzate. Si noti comunque che i valori riportati in **Figura 4.9** sono riferiti all'unità di superficie di piastrelle e, alla luce delle diminuzioni dei flussi di massa riscontrati nell'ultimo anno, non necessariamente indicano un aumento delle emissioni complessive di SOV. La **Figura 4.10** mostra, rispetto all'anno precedente, un aumento delle emissioni associate alle **Aldeidi**, che è comunque contenuto per le classi "1(A+B)" e "3(A+B)".



Per quanto concerne il **flusso di massa annuo di NO**_x, dal quadro rappresentato in **Figura 4.11(a)**, emerge una tendenza all'aumento dei valori registrati a partire dal 2010 e fino all'anno 2014; mentre dal 2016 al 2018 l'evoluzione temporale cambia andamento, mostrando una sostanziale tendenza alla stabilità, seppure in presenza di alcune oscillazioni. Dopo un decremento fino al 2020, le emissioni mostrano una crescita significativa, in particolare per le classi "1(A+B)" e "2", attribuibile alla ripresa produttiva post-Covid del 2021-2022 e alla crisi energetica del 2023. Al contrario, gli stabilimenti della classe "3(A+B)" mantengono valori pressoché stabili nel tempo.

L'andamento del corrispondente fattore di emissione di NO_x [Figura 4.11(b)], conferma una intuibile correlazione con le diverse classi di prodotto/ciclo. Essendo l'emissione di NO_x derivante quasi esclusivamente dalla fase di combustione, si presume che tali risultati possano essere ricondotti sia alle mutate esigenze produttive, influenzate da richieste di mercato sempre più frammentate (non soltanto nella fase di cottura, ma anche nella preparazione impasti ed essiccazione) sia agli effetti della crisi energetica, che ha in alcuni casi comportato fermate o gestioni meno ottimizzate dei forni.

Per quanto concerne, infine, l'emissione di **anidride carbonica**, iniziamo col focalizzare l'attenzione sul **fattore di emissione di CO**₂ derivante dalla combustione (kg/m²), relativo all'anno 2024. Dalla **Fig. 4.12(a)** possiamo notare, ancora una volta, la significativa relazione diretta fra l'emissione in esame e la classe di prodotto/ciclo. Innanzitutto, è importante sottolineare come l'emissione di anidride carbonica media si concentri nell'intervallo tra 3 e 8 kg/m² circa.

Il livello più elevato è ovviamente associato alla classe "2" di prodotto/ciclo, che include la quota parte di emissioni riconducibili al consumo di gas naturale per la produzione addizionale di atomizzato destinato a terzi. Nell'intervallo intermedio si collocano gli stabilimenti con ciclo completo

"1(A+B)"; mentre ai livelli più bassi sono posizionati gli stabilimenti con ciclo parziale "3(A+B)".

Questi ultimi godono evidentemente del vantaggio determinato dalla mancanza della fase di preparazione dell'impasto atomizzato; fase caratterizzata da elevati consumi di gas naturale, con conseguente elevata emissione di CO₂. Le tendenze degli indicatori nei 15 anni indagati sono praticamente concordi nell'evidenziare, in generale, un andamento piuttosto costante per le tre diverse classi di prodotto/ciclo; indipendentemente dall'andamento della produzione versata a magazzino. Analogamente a quanto già trattato per le emissioni in atmosfera degli inquinanti "Materiale particellare" e "Composti del Fluoro" (Fig. 4.4 e Fig. 4.5), appare di particolare interesse esaminare anche l'evoluzione, a partire dalla fine degli anni '80 del secolo scorso, delle emissioni di questo "gas serra".

Nella **Fig. 4.12(b)** il campo di indagine del presente Rapporto integrato, relativo agli anni 2010-2024, è stato esteso al periodo dal 1988 al 2024, mantenendo come parametro oggetto di attenzione il fattore di emissione medio di anidride carbonica (FEco2).

Negli ultimi quarant'anni l'intero settore delle piastrelle di ceramica, grazie al forte impegno nello sviluppo e nell'adozione di tecnologie di produzione "verdi", è stato protagonista di un significativo miglioramento dalle prestazioni ambientali dei cicli produttivi, compresi i consumi energetici, i quali hanno fatto riscontrare una diminuzione nei consumi specifici di più del 50%, passando dai 12 GJ/t degli anni '80, ai 5-6 GJ/t dell'ultimo decennio.

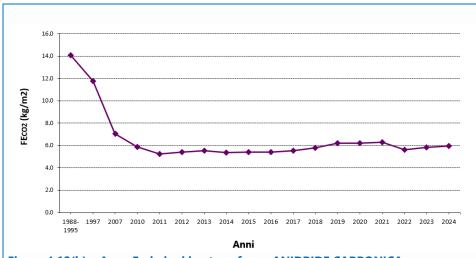


Figura 4.12(b) – Area: Emissioni in atmosfera – ANIDRIDE CARBONICA Periodo 1988-2024

Fattore di emissione di anidride carbonica (FEco2):

valori medi annui comprensivi delle diverse classi di prodotto/ciclo.

Come conseguenza, essendo l'emissione di anidride carbonica prevalentemente associata al processo di combustione del gas naturale (fonte energetica, quest'ultima, predominante nel settore ceramico), il significativo miglioramento che è stato raggiunto sui consumi energetici, nel medesimo periodo di tempo, ha consentito di ottenere una altrettanto sensibile diminuzione delle emissioni di CO₂ in atmosfera. Il risultato di questo impegno è chiaramente leggibile nel diagramma di Fig. 4.12(b), dal quale emerge che il fattore di emissione medio di anidride carbonica, nel periodo 2010-2024, si attesta su livelli intorno al 50%, rispetto a quelli di fine '900.

Altro parametro da considerare è il **flusso di massa di CO**₂, in t/anno. I diversi stabilimenti inclusi nel campione vengono distribuiti, in **Fig. 4.12(c)**, in specifiche classi di emissione (tonalità di colore di intensità crescente, al crescere del valore di emissione), allo scopo di valutare alcune interessanti

correlazioni. Mentre, in Fig. 4.12(d), è possibile avere contezza della percentuale di stabilimenti che ricade nel livello di emissione considerato.

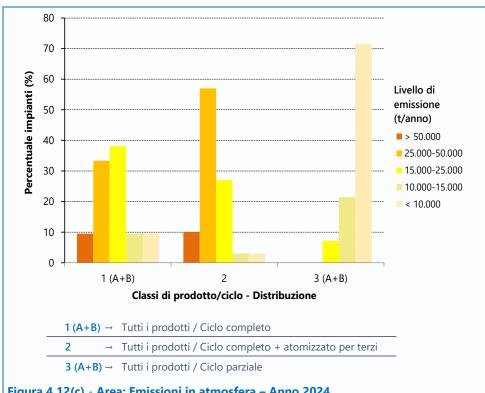
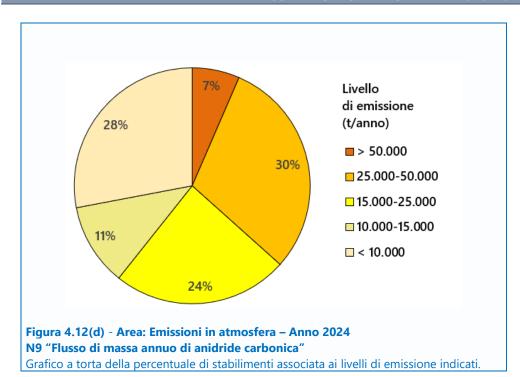
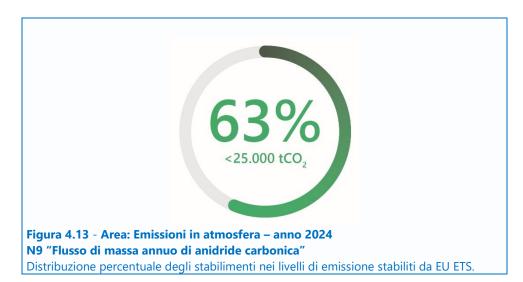



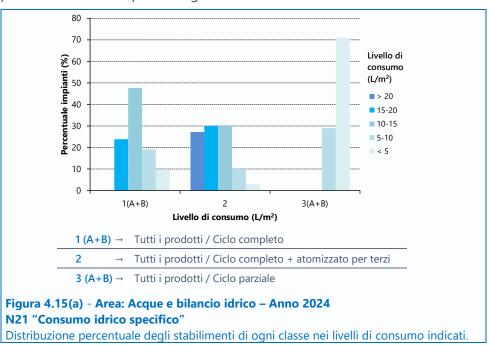
Figura 4.12(c) - Area: Emissioni in atmosfera – Anno 2024 N9 "Flusso di massa annuo di anidride carbonica"

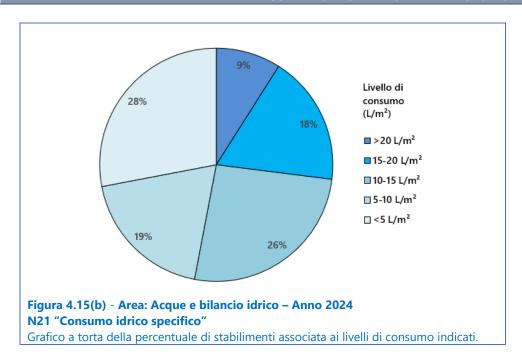

Distribuzione percentuale degli stabilimenti di ogni classe nei livelli di emissione indicati.

La prima considerazione riguarda la dimensione degli stabilimenti inclusi nel campione. L'elaborazione effettuata mostra che circa il 10% degli stabilimenti di Classe "1(A+B)" e "2", supera le 50.000 tCO $_2$ /anno; mentre nessun superamento di questo valore si è verificato fra gli stabilimenti di Classe "3(A+B)".

Quanto riscontrato corrisponde alle aspettative, in quanto gli stabilimenti della Classe "1(A+B)" e "2" sono quelli operanti in ciclo completo, inoltre quelli di Classe "2" sono caratterizzati da una produzione addizionale di atomizzato per terzi. Ugualmente corrispondente alle attese sono i livelli di emissione più bassi, registrati negli stabilimenti di Classe "3(A+B)", operanti in ciclo parziale: infatti, ben il 71% di essi si posiziona al di sotto delle 10.000 tCO₂/anno. I valori evidenziano, inoltre, come la produzione italiana di

piastrelle di ceramica sia caratterizzata da aziende di "piccole dimensioni" dal punto di vista delle emissioni di anidride carbonica. Infatti, ben il 63% di tutti i siti considerati ha emissioni inferiori alle 25.000 tCO₂/anno (Figura 4.13), limite stabilito dall'European Emissions Trading Scheme (EU ETS) per poter applicare agli impianti le "misure equivalenti" previste per i piccoli emettitori.


4.2. Acque e bilancio idrico


Le ottime prestazioni raggiunte nella gestione delle acque e del bilancio idrico sono dimostrate dal **recupero pressoché totale delle acque reflue**, con evidenti conseguenze positive associate sia al risparmio di risorse idriche (riduzione dei prelievi), sia alla protezione dell'ambiente, non essendo praticamente presenti scarichi di acque reflue in corpi superficiali o nella rete pubblica; infatti ben il **95**% degli stabilimenti appartenenti al campione sottoposto ad indagine vanta la **totale assenza di scarichi idrici** di acque provenienti dal processo produttivo.

Nel 2024 il **riciclo delle acque reflue** ha confermato di contribuire per il **48**% al fabbisogno idrico (**Figura 4.14**) ed il **fattore medio di recupero** (acque riutilizzate, rispetto alle acque reflue prodotte) è stato pari al **105**%, evidenziando la capacità del settore ad assorbire anche acque reflue di origine esterna.

Per valutare posizioni ed andamenti relativi alle **acque ed al bilancio idrico**, per gli stabilimenti di produzione di piastrelle di ceramica, risulta interessante analizzare i dati relativi al consumo idrico specifico. L'attenzione deve essere focalizzata sulle differenze fra le diverse classi di prodotto/ciclo, piuttosto che sulle variazioni avvenute nel corso degli anni, a parità di prodotto/ciclo: variazioni praticamente trascurabili e decisamente non significative (come risulta esplicitamente dai dati presenti nell'allegato 3). Le relazioni con le classi di prodotto/ciclo, per l'anno 2024, sono illustrate in **Fig. 4.15(a)**, nella quale i diversi stabilimenti inclusi nel campione sono stati distribuiti in precise classi di consumo idrico specifico (tonalità di colore di intensità crescente, al crescere del valore). Mentre, in **Fig. 4.15(b)**, è possibile avere contezza della distribuzione percentuale di tutte le Classi nei vari livelli di consumo. Allo scopo di valutare alcune interessanti correlazioni; è quindi possibile osservare quanto segue:

- ☐ Il 76% degli stabilimenti della classe "1(A+B)" (ciclo completo) presenta un livello di consumo idrico inferiore a 15 L/m²;
- □ Il 60% degli stabilimenti della classe "2" (ciclo completo + atomizzato per conto terzi) è caratterizzato da livelli di consumo idrico compresi fra 10 e 20 L/m²;
- □ Il 100% degli stabilimenti della classe "3(A+B)" (ciclo parziale) ha registrato livelli di consumo idrico inferiori a 10 L/m²; il 71% addirittura inferiori a 5 L/m²;
- ☐ Il livello più elevato di 20 L/m²è stato superato soltanto dal 27% della classe "2"; corrispondente al 10% dell'intero campione indagato.

Risulta evidente come i consumi idrici più consistenti siano associati alla classe "2", la quale, producendo anche atomizzato per terze parti, consuma

globalmente quantitativi di acqua maggiori. Di converso, la classe "3 (A+B)" mostra consumi di acqua esigui, se rapportati alle altre classi, poiché in questi impianti si utilizza l'atomizzato prodotto da terzi.

Si può, dunque, concludere che i diversi stabilimenti hanno dimostrato di avere raggiunto livelli prestazionali d'eccellenza, stabili ed affidabili.

Sempre in merito alle **acque e al bilancio idrico**, risultano particolarmente interessanti le considerazioni che emergono dal confronto dei dati con i rispettivi parametri di riferimento per la valutazione delle prestazioni; nel caso specifico, è stato analizzato il "Rapporto di riciclo (interno/esterno) delle acque reflue" (Figura 4.16).



Figura 4.16 – Area: Acque e bilancio idrico N23 "Rapporto di riciclo (interno/esterno) delle acque reflue" Dati anno 2024, a confronto con specificati riferimenti per la valutazione.

Innanzitutto, è importante sottolineare come tutti i valori rilevati per il Rapporto di riciclo, tra tutti gli impianti indagati, si collochino al di sopra del valore di soglia prescritto dal riferimento legislativo, costituito dalle BAT di settore: da un riciclo minimo del 95%, ad un massimo de 182%, a fronte della soglia minima richiesta dalle BAT pari al 50%. Si può dunque concludere che, anche dal punto di vista del riciclo delle acque reflue, i diversi stabilimenti hanno dimostrato di aver raggiunto livelli prestazionali estremamente elevati, affidabili e di provata eccellenza.

4.3. Uso dei materiali

Nel 2024 il fattore medio di recupero (scarti riutilizzati rispetto a scarti prodotti), è stato pari al 122%, consolidando le già ottime prestazioni nel recupero dei propri scarti solidi di produzione e depurazione ed evidenziando, anche per questo parametro, la capacità del settore di assorbire anche altri scarti provenienti da filiere produttive diverse.

Il riutilizzo degli scarti solidi ha permesso quindi di coprire l'11,2% del fabbisogno delle materie prime necessarie per il processo di fabbricazione (Figura 4.17).

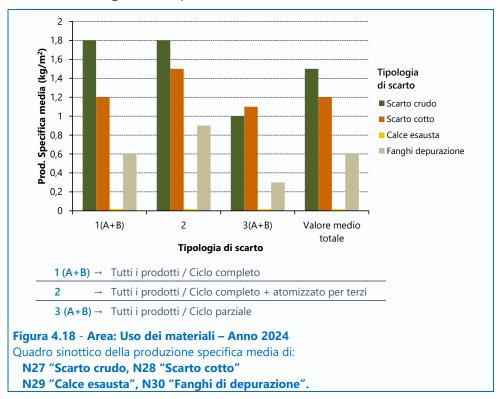
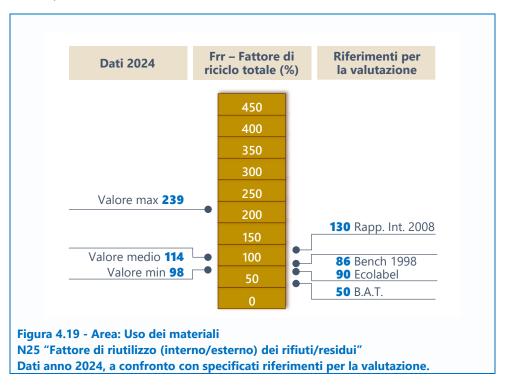


Figura 4.17 - Area: Uso dei materiali - Anno 2024 N26 "Incidenza dei rifiuti/residui su composizione impasto"

Anche in questo caso si è ritenuto preferibile trascurare l'analisi sull'evoluzione dei vari parametri nel tempo, non risultando particolarmente significativa e concentrare invece l'attenzione sulle relazioni fra produzione specifica di scarti (di produzione e di depurazione) e classe di prodotto/ciclo.


□□□□ ANDAMENTI E TENDENZE DEI 35 INDICATORI NEGLI ANNI 2010-2024, PER LE DIVERSE CLASSI DI PRODOTTO/CICLO

I risultati di tale analisi sono riportati in **Fig. 4.18**, e confermano sostanzialmente i risultati di precedenti indagini, relative sia all'intero settore, sia a singole unità produttive.

Volendo analizzare i dati raccolti, e confrontarli con i rispettivi parametri di riferimento per la valutazione delle prestazioni, ancora una volta è importante sottolineare come tutti i valori inerenti al **Fattore di riciclo dei residui (Figura 4.19)** si collochino ampiamente al di sopra del valore di soglia prescritto dalle BAT di settore, variando da un minimo del 98% ad un massimo del 239%, a fronte del 50% richiesto dalle BAT.

Inoltre, risulta ancora una volta estremamente positivo il confronto tra i valori comunicati nei report AIA ed il valore di soglia del corrispondente criterio **Ecolabel** (stabilito del 90%): anche in questo caso, nessun impianto, tra quelli indagati dal campione, presenta un fattore di riciclo inferiore al valore prescritto da Ecolabel.

Si può dunque concludere che, anche dal punto di vista del **riutilizzo degli** scarti solidi, i diversi stabilimenti hanno dimostrato di aver raggiunto livelli prestazionali elevati e di provata eccellenza.

4.4. Consumo di energia

Gli indicatori prescelti, allo scopo di valutare la posizione del campione di aziende oggetto di studio in relazione ai consumi energetici, sono il consumo specifico di gas naturale CSg (GJ/t), il consumo specifico di energia elettrica CSe (GJ/t) e il consumo specifico totale di energia CSt (GJ/t).

Indicatore	Dati di partenza	Formula di calcolo		
	Cgn = Consumo annuo di gas naturale [Sm3/anno];			
N 31	Pt = Produzione annua versata a magazzino [t/anno];	CSg = (Cgn*34,33/1.000)/Pt		
	34,33 = PCI del gas naturale [MJ/Sm3]			
	Ce =Consumo annuo di en. elettrica [kWh/anno];			
N 32	Pt = Produzione annua versata a magazzino [t/anno];	CSe = (Ce*3,6/1.000)/Pt		
	3,6 = Fattore di Conversione [MJ/kWh]			
	Cgn = Consumo annuo di gas naturale [Sm3/anno];			
N 33	Ce = Consumo annuo di en. elettrica [kWh/anno];	CSt = CSg+ CSe		
	Pt = Produzione annua versata a magazzino [t/anno]			

Il presente Rapporto Integrato ha introdotto, a partire dai dati 2020, un nuovo metodo di valutazione dei consumi annui di gas naturale Cgn (Sm³/anno) e di energia elettrica Ce (kWh/anno), in modo da considerare i soli contributi energetici che entrano in gioco nel processo di produzione delle piastrelle versate a magazzino. In particolare:

$$Cgn = NG - (NGCHP * 0,37) - NGatm$$

Ce = EE + (PE - PER) - EEatm

dove:

Simbolo	Definizione	u.m.			
NG	Gas naturale prelevato da rete	Sm³/anno			
NGCHP	NGCHP Gas naturale cogenerazione				
NGatm	NGatm Gas naturale per produrre atomizzato trasferito o venduto a terzi				
EE	EE Energia elettrica prelevata dalla rete				
PE	PE Energia elettrica auto-prodotta totale				
PER	Energia elettrica auto-prodotta e immessa in rete	kWh/anno			
EEatm	Energia elettrica per produrre atomizzato trasferito o venduto a terzi	kWh/anno			

Il nuovo metodo esclude i contributi energetici relativi alla produzione di atomizzato per la vendita a terzi (GNatm o EEatm) o la quota parte di energia auto-prodotta internamente e ceduta alla rete pubblica (PER).

Per i sistemi di cogenerazione, viene considerato il solo contributo termico in uscita dal cogeneratore ed impiegato nel processo di atomizzazione, escludendo quindi la quota parte impiegata nella generazione di energia elettrica.

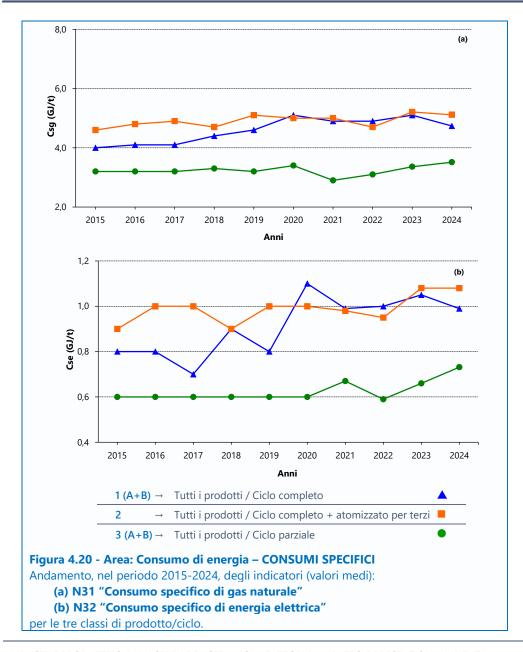
Il contributo termico del cogeneratore, utile ai fini del processo produttivo, è stato ricavato per via indiretta, nota l'energia primaria in ingresso (NGCHP) al cogeneratore e stimando un rendimento elettrico medio che fosse rappresentativo del settore. Il rendimento elettrico medio (pari al 37%) è stato calcolato attraverso una media pesata che tenesse conto del numero e della tipologia di impianti di cogenerazione attivi al 2018⁶.

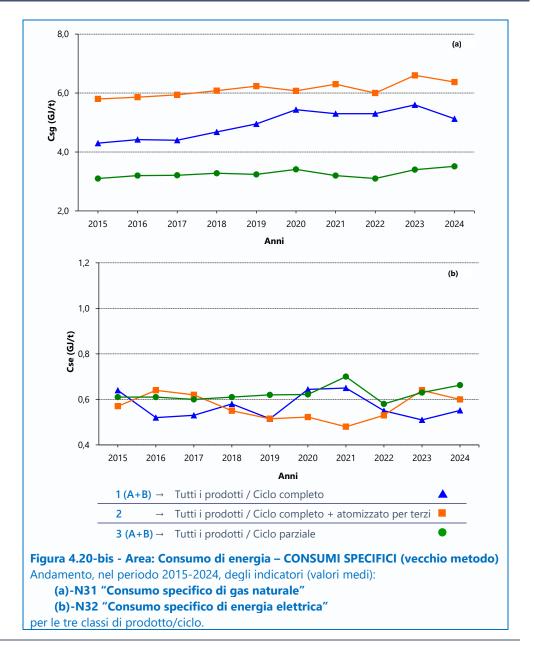
impianti di cogenerazione con turbine a gas, i cui rendimenti non superano il 33%,

⁶ Dall'analisi delle Diagnosi Energetiche, prodotte nel 2019, risultavano installati 17

Il calcolo degli indicatori secondo il nuovo metodo è stato effettuato, oltre che per l'anno 2024, anche per gli anni precedenti fino al 2015 [Fig. 4.20(a), 4.20 (b) e 4.21]. A tale arco temporale fanno riferimento anche gli indicatori ottenuti con il metodo di calcolo precedentemente utilizzato, di cui si riporta l'andamento in Fig. 4.20-bis (a), 4.20-bis (b) e 4.21-bis, in modo da valutare le differenze tra i due approcci.

Per quanto concerne il **consumo specifico di gas naturale**, la Fig. 4.20 (a) dimostra che i valori medi si concentrano, indicativamente, nell'intervallo tra 3 e 5 GJ/t. Il livello più elevato – da 4,0 a 5,2 GJ/t - è associato agli stabilimenti a ciclo completo appartenenti alla Classe di prodotto/ciclo "1(A+B) e "2". Ai livelli più bassi – da 3,1 a 3,5 GJ/t – si collocano i siti con ciclo parziale, della classe "3(A+B)". Questi ultimi "godono" del vantaggio energetico, determinato dalla mancanza della fase di preparazione dell'impasto atomizzato (fase caratterizzata da elevati consumi di gas naturale).


Se per gli stabilimenti appartenenti alle Classi "1(A+B)" e "3(A+B)" non si osserva una variazione significativa dei consumi rispetto al precedente metodo di calcolo, gli stabilimenti della Classe "2" presentano dei valori inferiori. Tali stabilimenti risentono maggiormente delle modifiche apportate con il nuovo metodo poiché, rispetto alle altre Classi, sono caratterizzati da un maggior numero d'impianti di cogenerazione e da consumi riconducibili alla preparazione di atomizzato per la vendita a terzi.


Per quanto concerne invece il **consumo specifico di energia elettrica** [Fig. 4.20(b)], si osserva in generale un aumento dei valori per le Classi "1(A+B)" e "2" rispetto al precedente metodo di calcolo, il quale non considerava la

quota parte di energia elettrica auto-prodotta e consumata internamente (in quanto era stata sancita l'ipotesi che essa fosse completamente compresa nel consumo di gas, necessario per la produzione di calore per gli atomizzatori).

I grafici riportati in Fig. 4.21 e 4.21-bis sono concordi nell'evidenziare un andamento simile dei **consumi specifici totali di energia (termica** + **elettrica)**, calcolati con i due metodi, specialmente per gli stabilimenti appartenenti alla Classe "3(A+B)"; mentre, in funzione delle considerazioni sopra riportate, riguardanti gli stabilimenti appartenenti alla Classe "2", è possibile osservare una leggera diminuzione dei consumi specifici totali di energia, rispetto al precedente metodo di calcolo.

e 13 con motori a combustione interna, caratterizzati da rendimenti compresi tra il 42 e il 44%.



Figura 4.21 - Area: Consumo di energia – CONSUMI SPECIFICI
Andamento dei consumi specifici totali di energia (termica + elettrica), dell'indicatore:
N33 "Consumo specifico totale di energia (termica + elettrica)"
per le tre classi di prodotto/ciclo.

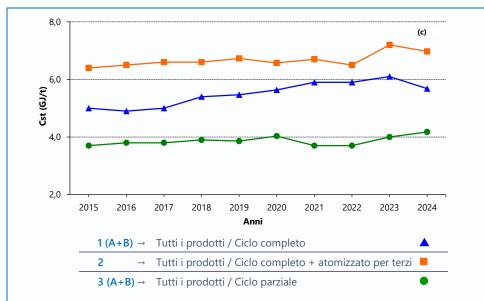


Figura 4.21-bis - Area: Consumo di energia – CONSUMI SPECIFICI (vecchio metodo) Andamento dei consumi specifici totali di energia (termica + elettrica), dell'indicatore: N33 "Consumo specifico totale di energia (termica + elettrica)" per le tre classi di prodotto/ciclo.

Allegato 1:

Classificazione degli stabilimenti in funzione del prodotto e del ciclo di fabbricazione

		N° Stabilimenti per anno														
Classe	Definizione	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1A	Grès porcellanato / Ciclo completo	14	13	13	15	11	17	14	14	14	14	16	16	16	16	19
1B	Altri prodotti / Ciclo completo	9	10	8	5	5	4	4	4	5	4	4	3	2	2	2
1(A+B)	Tutti i prodotti / Ciclo completo						21	18	18	19	18	20	19	18	18	21
2	Tutti i prodotti / Ciclo completo+ Atomizzato x terzi	33	33	34	34	33	31	32	33	31	30	33	31	31	28	30
3A	Grès porcellanato / Ciclo parziale	22	25	25	26	27	30	28	32	31	31	27	29	33	30	26
Altri prodotti / Ciclo parziale		13	9	10	7	8	7	7	7	7	7	7	5	3	4	2
3(A+B) Tutti i prodotti / Ciclo parziale							37	35	39	38	38	34	34	36	34	28
	91	90	90	87	84	89	85	90	87	86	87	84	85	80	79	

Allegato 2:

Quadro sinottico dei 35 indicatori utilizzati in questo Rapporto e delle rispettive formule di calcolo

2.1 - Definizioni

Flusso	di mass	a annuo	Area 1: Emissioni in atmosfera	Fatto	ssione	
Simbolo			Indicatori		Simbolo	
FMmp	N 1	kg/anno	Materiale Particellare (MP)	g/m²	N 10	FEmp
FMf	N 2	kg/anno	Composti del Fluoro	g/m²	N 11	FEf
FMpb	N 3	kg/anno	Composti del Piombo	mg/m²	FEpb	
FMsov	N 4	kg/anno	SOV – Sostanze Organiche Volatili	g/m²	FEsov	
FMald	N 5	kg/anno	Aldeidi	g/m²	N 14	FEald
FMsox	N 6	kg/anno	Ossidi di Zolfo	g/m²	N 15	FEsox
FMnox	N 7	kg/anno	Ossidi di Azoto	g/m²	N 16	FEnox
FMco	N 8	kg/anno	Monossido di Carbonio	g/m²	N 17	FEco
FMco2	N 9	t/anno	Anidride Carbonica	kg/m²	N 18	FEco2

ı	Portata a	innua	Portata specifica				
Simbolo)		Indicatori	Simbo			
Cw	N 19	1000 m ³ /anno	Consumo idrico	L/m ²	N 21	Csw	
FBw	N 20	1000 m ³ /anno	Fabbisogno idrico	L/m ² N 22 FBs			
			Rapporto di riciclo delle acque reflue (interno/esterno)	%	N 23	R	
			Copertura con acque reflue del fabbisogno idrico per la preparazione dell'impasto	%	N 24	RM	

Area 3: Uso dei materiali	Portata specifica				
Indicatori		Simbolo			
Fattore di riutilizzo (interno/esterno) dei rifiuti/residui	%	N 25	Frr		
Incidenza di rifiuti/residui sulla composizione dell'impasto	%	N 26	lr-p		
Produzione specifica di scarto crudo	kg/m²	N 27	Rs,cr		
Produzione specifica di scarto cotto	kg/m²	N 28	Rs,co		
Produzione specifica di calce esausta	kg/m²	N 29	Rs,ce		
Produzione specifica di fanghi da depurazione (waste water treatment processes)	kg/m²	N 30	Fdep		

C	Consumo annuo Area 4: Consumo di energia			Con	sumo spe	cifico
Simbolo)		Indicatori	Simb		
Ctg	N 34	TJ/anno	Gas Naturale	GJ/t	N 31	Csg
Cte	N 35	TJ/anno	Energia Elettrica	GJ/t	N 32	Cse
	•		Consumo totale (termico+elettrico)	GJ/t	N 33	Cst

2.2 – Formule di calcolo

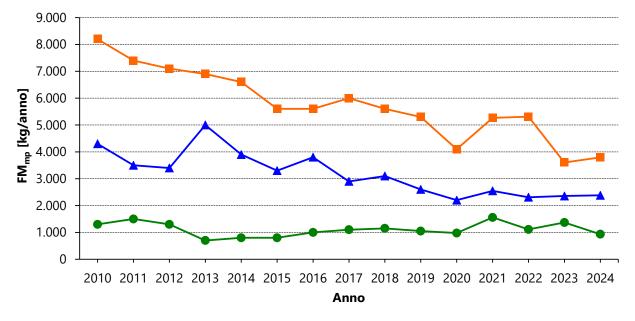
Indicatore	Dati di partenza	Formula di calcolo
N 1	Qj = Portata dell'impianto j [Nm3/h]; Cmp,j = Concentrazione di materiale particellare nell'impianto j [mg/Nm3]; FHj = Funzionamento annuo dell'impianto j [h/anno]	FMmp = Σj (Qj * Cmp,j * FHj) / 1.000.000
N 2	Qj = Portata dell'impianto j [Nm3/h]; Cf,j = Concentrazione dei composti del fluoro nell'impianto j [mg/Nm3]; FHj = Funzionamento annuo dell'impianto j [h/anno]	FMf = Σj (Qj * Cf,j * FHj) / 1.000.000
N 3	Qj = Portata dell'impianto j [Nm3/h]; Cpb,j = Concentrazione dei composti del piombo nell'impianto j [mg/Nm3]; FHj = Funzionamento annuo dell'impianto j [h/anno]	FMpb = Σj (Qj * Cpb,j * FHj) / 1.000.000
N 4	Qj = Portata dell'impianto j [Nm3/h]; Csov,j = Concentrazione di sostanze organiche volatili nell'impianto j [mg/Nm3]; FHj = Funzionamento annuo dell'impianto j [h/anno]	FMsov = Σj (Qj * Csov,j * FHj) / 1.000.000
N 5	Qj = Portata dell'impianto j [Nm3/h]; Cald,j = Concentrazione di aldeidi nell'impianto j [mg/Nm3]; FHj = Funzionamento annuo dell'impianto j [h/anno]	FMald = Σj (Qj * Cald,j * FHj) / 1.000.000
N 6	Qj = Portata dell'impianto j [Nm3/h]; Csox,j = Concentrazione di ossidi di zolfo nell'impianto j [mg/Nm3]; FHj = Funzionamento annuo dell'impianto j [h/anno]	FMsox = Σj (Qj * Csox,j * FHj) / 1.000.000
N 7	Qj = Portata dell'impianto j [Nm3/h]; Cnox,j = Concentrazione di ossidi di azoto nell'impianto j [mg/Nm3]; FHj = Funzionamento annuo dell'impianto j [h/anno]	FMnox = Σj (Qj * Cnox,j * FHj) / 1.000.000
N 8	Qj = Portata dell'impianto j [Nm3/h]; Cco,j = Concentrazione di monossido di carbonio nell'impianto j [mg/Nm3]; FHj = Funzionamento annuo dell'impianto j [h/anno]	FMco = Σj (Qj * Cco,j * FHj) / 1.000.000
N 9	Cgn = Consumo annuo di gas naturale [Sm3/anno]; 1,981 = Fattore di emissione di CO2 [kg/Sm3]	FMco2 = (Cgn * 1,981) / 1.000

Indicatore	Dati di partenza	Formula di calcolo
N 10	FMmp = Flusso di massa annuo di materiale particellare [kg/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	FEmp = (FMmp / Pm) * 1.000
N 11	FMf = Flusso di massa annuo dei composti del fluoro [kg/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	FEf = (FMf / Pm) * 1.000
N 12	FMpb = Flusso di massa annuo dei composti del piombo [kg/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	FEpb = (FMpb / Pm) * 1.000.000
N 13	FMsov = Flusso di massa annuo di sostanze organiche volatili [kg/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	FEsov = (FMsov / Pm) * 1.000
N 14	FMald = Flusso di massa annuo di aldeidi [kg/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	FEald = (FMald / Pm) * 1.000
N 15	FMsox = Flusso di massa annuo di ossidi di zolfo [kg/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	FEsox = (FMsox / Pm) * 1.000
N 16	FMnox = Flusso di massa annuo di ossidi di azoto [kg/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	FEnox = (FMnox / Pm) * 1.000
N 17	FMco = Flusso di massa annuo di monossido di carbonio [kg/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	FEco = (FMco / Pm) * 1.000
N 18	FMco2 = Flusso di massa annuo di anidride carbonica [t/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	FEco2 = (FMco2 / Pm) * 1.000
N 19	Ap = Consumo annuo di acqua prelevata da pozzo e/o acquedotto [m3/anno]	Cw = Ap / 1.000
N 20	 Ap = Consumo annuo di acqua prelevata da pozzo e/o acquedotto [m3/anno]; Ar,ei = Acque reflue di provenienza esterna, riutilizzate nel sito produttivo [m3/anno]; Ar,i = Acque reflue di origine interna al sito, riutilizzate nel sito produttivo stesso [m3/anno] 	FBw = (Ap + Ar,ei + Ar,i) / 1.000
N 21	Ap = Consumo annuo di acqua prelevata da pozzo e/o acquedotto [m3/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	Csw = (Ap / Pm) * 1.000

Indicatore	Dati di partenza	Formula di calcolo
N 22	 Ap = Consumo annuo di acqua da pozzo e/o acquedotto [m3/anno]; Ar,ei = Acque reflue di provenienza esterna, riutilizzate nel sito produttivo [m3/anno]; Ar,i = Acque reflue di origine interna al sito, riutilizzate nel sito produttivo stesso [m3/anno]; Pm = Produzione annua versata a magazzino [m2/anno]. 	FBsw = ((Ap+Ar,ei+Ar,i) / Pm) * 1.000
N 23	 Ar,ei = Acque reflue di provenienza esterna, riutilizzate nel sito produttivo [m3/anno]; Ar,i = Acque reflue di origine interna al sito, riutilizzate nel sito produttivo stesso [m3/anno]; Ar,ie = Acque reflue di origine interna al sito, riutilizzate esternamente al sito produttivo [m3/anno]; As = Acque reflue scaricate in corpi idrici superficiali e/o in fognatura [m3/anno]. 	R = ((Ar,ei+Ar,i+Ar,ie) / (Ar,i+Ar,ie+As)) * 100
N 24	Ar,imp = Acque reflue di origine interna o esterna al sito, riutilizzate nella preparazione impasto [m3/anno]; Ap,imp = Consumo annuo di acqua prelevata da pozzo e/o acquedotto, utilizzate nella preparazione impasto [m3/anno].	RM = ((Ar,imp) / (Ar,imp + Ap,imp)) * 100
N 25	Rpe = Rifiuti/residui di provenienza esterna, riutilizzati nel sito produttivo [t/anno]; Rri = Rifiuti/residui di origine interna al sito, riutilizzati nel sito produttivo stesso [t/anno]; Rre = Rifiuti/residui di origine interna al sito, riutilizzati esternamente al sito produttivo [t/anno]; Rd = Rifiuti conferiti in discarica [t/anno].	Frr = ((Rpe+Rri+Rre) / (Rri+Rre+Rd)) * 100
N 26	Rr,imp = Rifiuti/residui di provenienza interna e/o esterna, riutilizzati nell'impasto [t/anno]; Mp = Consumo annuo di materie prime utilizzate per l'impasto [t/anno].	Ir-p = ((Rr,imp) / (Rr,imp + Mp)) * 100
N 27	Scr = Produzione annua di scarto crudo [t/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	Rs,cr = (Scr / Pm) * 1.000

Indicatore	Dati di partenza	Formula di calcolo
N 28	Sco = Produzione annua di scarto cotto [t/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	Rs,co = (Sco / Pm) * 1.000
N 29	Sce = Produzione annua di calce esausta [t/anno]; Pm = Produzione annua versata a magazzino [m2/anno]	Rs,ce = (Sce / Pm) * 1.000
N 30	F = Produzione annua di fanghi da depurazione e/o da levigatura [t/anno];Pm = Produzione annua versata a magazzino [m2/anno]	Fdep = (F / Pm) * 1.000
N 31	Cgn = Consumo annuo di gas naturale [Sm3/anno]; Pt = Produzione annua versata a magazzino [t/anno]; 34,33 = Potere Calorifico Inferiore del gas naturale [MJ/Sm3]	CSg = (Cgn * 34,33 / 1.000) / Pt
N 32	Ce = Consumo annuo di energia elettrica [kWh/anno]; Pt = Produzione annua versata a magazzino [t/anno]; 3,6 = Fattore di Conversione [MJ/kWh]	CSe = (Ce * 3,6 / 1.000) / Pt
N 33	Cgn = Consumo annuo di gas naturale [Sm3/anno]; Ce = Consumo annuo di energia elettrica [kWh/anno]; Pt = Produzione annua versata a magazzino [t/anno]	CSt = CSg+ CSe
N 34	Cgn = Consumo annuo di gas naturale [Sm3/anno]; 34,33 = Potere Calorifico Inferiore del gas naturale [MJ/Sm3]	Ctg = (Cgn * 34,33 / 1.000.000)
N 35	Ce = Consumo annuo di energia elettrica [kWh/anno]; 3,6 = Fattore di Conversione [MJ/kWh]	Cte = (Ce * 3,6 / 1.000.000)

Allegato 3:


Anni 2010-2024 - Raccolta degli indicatori energetici ed ambientali comunicati, elaborati per anno, per singolo stabilimento e per classe di prodotto/ciclo

N1 - XV - Anni 2010-2024

FMmp [kg/anno] Flusso di massa di materiale particellare

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	4.300	3.500	3.400	5.000	3.900	3.300	3.800	2.900	3.100	2.600	2.200	2.550	2.309	2.356	2.381
2	8.200	7.400	7.100	6.900	6.600	5.600	5.600	6.000	5.600	5.300	4.100	5.250	5.312	3.603	3.794
3 (A+B)	1.300	1.500	1.300	700	800	800	1.000	1.100	1.150	1.050	975	1.550	1.111	1.369	934

Classe 1 (A+B) → Tutti i prodotti / Ciclo completo

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 1 - XV - Anno 2024 -

FMmp [kg/anno] - Flusso di massa di materiale particellare

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[kg/anno]

877

Graduatoria

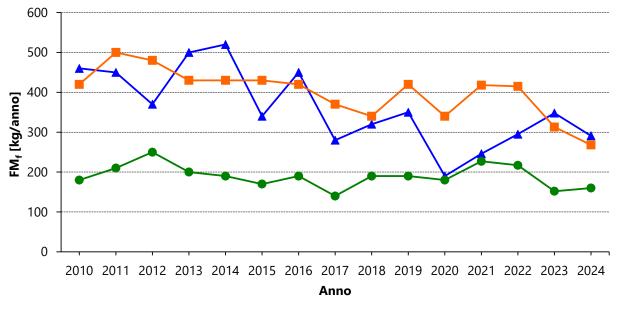
Graduatoria	Valori [kg/anno]	
1	705	
2	918	
3	1.467	
4	1.771	cog + lev
5	1.840	lev
6	1.864	cog + lev
7	2.020	cog
8	2.297	cog
9	2.385	cog
10	2.451	cog + lev
11	2.550	
12	2.595	cog
13	2.680	cog
14	3.192	cog
15	3.228	cog
16	3.525	cog + lev
17	3.647	cog + lev
18	4.004	
19	5.578	cog

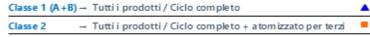
Graduatoria	Valori [kg/anno]	
1	146	
2	1.137	

Graduatoria	Valori [kg/anno]	
1	164	
2	1.186	lev
3	1.267	cog
4	1.291	lev
5	1.395	cog
6	1.446	cog + lev
7	1.475	cog
8	1.799	cog
9	1.847	lev
10	1.924	cog
11	2.118	
12	2.169	cog + lev
13	2.394	cog
14	2.397	cog + lev
15	2.468	cog
16	2.705	
17	3.264	cog
18	3.362	cog
19	3.382	cog
20	3.393	
21	3.427	cog
22	4.191	
23	4.242	cog + lev
24	4.845	cog
25	5.418	
26	5.631	cog + lev
27	6.698	cog + lev
28	6.818	cog + lev
29	7.539	cog + lev
30	23.567	cog

Graduatoria Valori [kg/anno] 1 64 2 120 lev 3 140 4 170	1 2
2 120 lev 3 140	2
3 140	
	2
4 170	3
	4
5 198	5
6 316	6
7 326 lev	7
8 331	8
9 396	9
10 441	10
11 455	11
12 486	12
13 521	13
14 525	14
15 595	15
16 868 lev	16
17 976	17
18 1.049 lev	18
19 1.271	19
20 1.323	20
21 1.359	21
22 1.449	22
23 1.852	23
24 1.861	24
25 2.270 lev	25
26 5.688	26

Legenda:


cog = cogenerazione


N2 - XV - Anni 2010-2024

FMf [kg/anno] Flusso di massa di composti del fluoro

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	460	450	370	500	520	340	450	280	320	350	190	250	295	348	291
2	420	500	480	430	430	430	420	370	340	420	340	420	415	313	268
3 (A+B)	180	210	250	200	190	170	190	140	190	190	180	230	217	152	160

N 2 - XV - Anno 2024 -

FMf [kg/anno] - Flusso di massa di composti del fluoro

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B				
Altri prodotti /				
ciclo parziale				

Valori

[kg/anno]

337

Graduatoria

Graduatoria	Valori [kg/anno]	
1	60	
2	82	cog + lev
3	103	cog + lev
4	106	cog + lev
5	161	cog
6	169	cog
7	197	cog
8	240	lev
9	243	
10	252	cog
11	274	cog + lev
12	302	
13	341	cog
14	424	
15	465	
16	472	cog
17	505	cog
18	542	cog
19	717	cog + lev

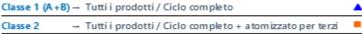
Graduatoria	Valori [kg/anno]	
1	137	
2	318	

Graduatoria	Valori	
Graduatoria	[kg/anno]	
1	2	
2	26	cog + lev
3	51	cog
4	58	
5	58	lev
6	108	cog
7	128	cog + lev
8	128	cog + lev
9	131	cog
10	148	cog + lev
11	155	cog
12	161	cog
13	164	cog
14	168	
15	204	cog
16	258	cog
17	267	cog + lev
18	271	cog + lev
19	281	lev
20	304	
21	316	cog
22	333	cog
23	355	cog + lev
24	447	
25	472	cog
26	499	cog
27	579	
28	786	cog
29	912	cog + lev

Graduatoria	Valori [kg/anno]	
1	13	
2	15	
3	16	
4	21	lev
5	36	lev
6	52	
7	58	
8	64	
9	71	
10	107	
11	108	
12	137	
13	143	lev
14	155	
15	161	
16	170	
17	172	lev
18	205	
19	238	
20	263	lev
21	276	
22	293	
23	327	
24	355	
25	460	

Legenda:

cog = cogenerazione


N3 - XV - Anni 2010-2024

FMpb [kg/anno] Flusso di massa di composti del piombo

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	6,7	5,1	3,6	2,1	2,0	2,3	3,1	3,1	3,8	3,6	2,3	3,7	3,9	3,7	3,2
2	7,1	5,4	4,9	3,8	5,0	4,5	4,2	4,8	4,5	3,0	3,1	5,8	5,5	4,8	5,9
3 (A+B)	2,0	6,3	2,7	3,2	2,2	2,4	2,0	2,3	3,2	2,7	2,1	2,9	3,4	3,3	2,5

N 3 - XV - Anno 2024 -

FMpb [kg/anno] - Flusso di massa di composti del piombo

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B				
Altri prodotti /				
ciclo parziale				

Graduatoria	Valori [kg/anno]	
1	0,35	
2	0,72	cog
3	0,84	cog
4	0,89	
5	1,11	
6	1,11	cog + lev
7	1,24	
8	1,53	cog + lev
9	1,67	cog
10	2,27	cog
11	3,07	cog + lev
12	3,45	cog
13	3,60	cog + lev
14	4,58	cog
15	4,94	
16	6,43	cog
17	6,67	lev
18	6,75	cog + lev
19	8,22	cog

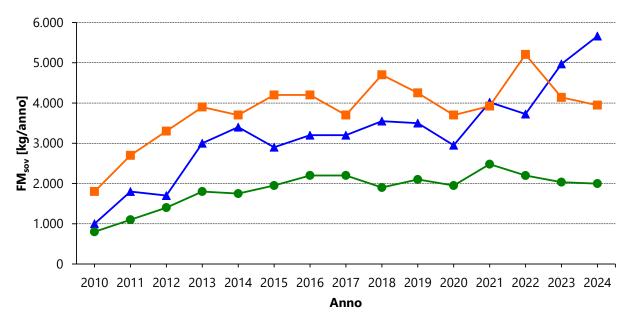
Graduatoria	Valori [kg/anno]	
1	0,72	
2	7,51	

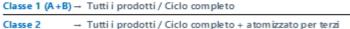
Graduatoria	Valori [kg/anno]	
1	0,02	
2		cog + lev
3	0,41	
4	0,84	lev
5	1,04	cog
6	1,10	cog
7	1,14	
8	1,30	cog
9	1,36	
10	1,40	cog
11	1,58	cog
12	2,72	cog + lev
13	3,51	cog
14	3,74	cog + lev
15	4,56	cog
16	4,82	cog
17	5,03	cog + lev
18	5,90	lev
19	6,61	cog
20	8,95	
21	8,88	cog
22	11,40	cog + lev
23	12,05	cog
24	14,65	cog
25	18,75	
26	30,38	cog + lev

Graduatoria	Valori [kg/anno]	
1	0,02	
2	0,29	lev
3	0,31	lev
4	0,31	
5	0,34	
6	0,49	
7	0,63	lev
8	0,72	
9	0,91	
10	1,06	
11	1,31	
12	1,43	
13	1,47	
14	1,87	
15	1,96	
16	2,10	
17	2,20	
18	2,97	
19	5,77	lev
20	5,93	lev
21	6,71	
22	6,82	
23	7,81	
24	9,99	_

Graduatoria	Valori [kg/anno]	
1	0,86	
2	1,96	

Legenda:


cog = cogenerazione


N4 - XV - Anni 2010-2024

FMsov [kg/anno] Flusso di massa di Sostanze Organiche Volatili

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	1.000	1.800	1.700	3.000	3.400	2.900	3.200	3.200	3.550	3.500	2.950	4.000	3.700	4.970	5.663
2	1.800	2.700	3.300	3.900	3.700	4.200	4.200	3.700	4.700	4.250	3.700	3.900	5.200	4.139	3.946
3 (A+B)	800	1.100	1.400	1.800	1.750	1.950	2.200	2.200	1.900	2.100	1.950	2.500	2.200	2.033	1.998

N 4 - XV - Anno 2024 -

FMsov [kg/anno] - Flusso di massa di sostanze organiche volatili

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B				
Altri prodotti /				
ciclo parziale				

Valori

[kg/anno]

2.962

Graduatoria

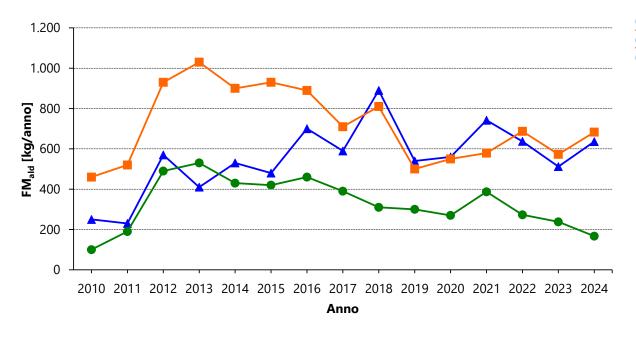
Graduatoria	Valori [kg/anno]	
1	968	cog + lev
2	1.893	cog
3	1.970	cog
4	2.143	cog + lev
5	2.380	cog + lev
6	2.851	cog
7	3.450	lev
8	4.080	
9	5.266	
10	6.673	
11	6.737	cog + lev
12	6.791	cog
13	7.800	cog
14	8.533	cog
15	8.900	cog
16	8.987	cog
17	9.888	cog + lev
18	12.359	
19	12.611	

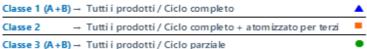
Graduatoria	Valori [kg/anno]	
1	2.123	
2	2.517	

Graduatoria	Valori [kg/anno]	
1	1.311	
2	1.352	cog
3	1.407	cog
4	1.446	
5	1.603	cog
6	1.787	lev
7	1.847	cog + lev
8	1.925	cog + lev
9	2.096	cog + lev
10	2.424	cog + lev
11	2.520	cog
12	2.593	cog + lev
13	2.618	cog
14	2.674	
15	2.910	cog
16	2.985	cog
17	3.093	cog
18	3.834	cog
19	4.672	lev
20	5.360	
21	5.369	cog
22	6.010	cog + lev
23	6.578	cog
24	7.637	cog + lev
25	7.927	cog
26	9.454	
27	13.124	cog

Graduatoria	Valori [kg/anno]	
1	411	
2	424	
3	618	
4	625	
5	669	
6	972	
7	1.099	
8	1.317	
9	1.386	
10	1.412	
11	1.751	lev
12	1.760	
13	1.760	lev
14	1.891	
15	2.087	
16	2.141	
17	2.694	
18	2.697	
19	2.827	lev
20	2.832	lev
21	2.865	
22	3.196	
23	3.426	
24	3.482	
25	3.574	
26	4.333	lev

<u>Legenda:</u>


cog = cogenerazione


N5 - XV - Anni 2010-2024

FMald [kg/anno] Flusso di massa di Aldeidi

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di		Anno													
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	250	230	570	410	530	480	700	590	890	540	560	740	640	512	636
2	460	520	930	1.030	900	930	890	710	810	500	550	580	690	<i>573</i>	683
3 (A+B)	100	190	490	530	430	420	460	390	310	300	270	390	270	238	167

N 5 - XV - Anno 2024 -

FMald [kg/anno] - Flusso di massa di aldeidi

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B					
Altri prodotti /					
ciclo parziale					

Graduatoria	Valori [kg/anno]	
1	14	cog
2	29	cog + lev
3	34	cog + lev
4	80	
5	184	cog
6	189	cog
7	191	cog + lev
8	233	
9	305	cog + lev
10	341	lev
11	346	
12	360	cog + lev
13	374	cog
14	392	cog
15	472	cog
16	883	cog
17	1.440	cog
18	2.279	
19	4.703	

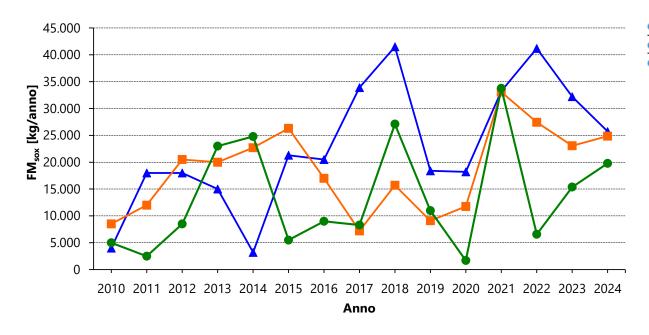
Graduatoria	Valori [kg/anno]	
1	132	
2	369	

Graduatoria	Valori	
<u> </u>	[kg/anno]	
1	6	cog
2	104	cog
3	145	cog + lev
4	166	cog
5	169	
6	227	cog + lev
7	233	
8	243	cog
9	256	lev
10	332	cog
11	390	cog
12	452	cog + lev
13	530	cog
14	540	cog
15	541	cog
16	704	cog + lev
17	818	cog
18	875	cog
19	882	
20	922	
21	969	cog
22	971	cog + lev
23	1.032	
24	1.186	cog + lev
25	1.266	cog + lev
26	1.832	lev
27	2.649	cog

Graduatoria	Valori [kg/anno]	
1	4	
2	12	
3	17	
4	17	lev
5	27	
6	36	
7	52	
8	59	
9	76	
10	90	lev
11	113	
12	178	
13	201	
14	202	
15	221	
16	221	
17	236	
18	279	lev
19	290	
20	309	
21	320	lev
22	352	
23	388	lev
24	409	

Graduatoria	Valori [kg/anno]	
1	59	
2	164	

<u>Legenda:</u>


cog = cogenerazione

N6 - XV - Anni 2010-2024

FMso_x [kg/anno] Flusso di massa di Ossidi di Zolfo

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di		Anno													
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	4.000	18.000	18.000	15.000	3.200	21.300	20.500	33.900	41.500	18.400	18.200	33.250	41.200	32.214	25.715
2	8.500	12.000	20.500	20.000	22.700	26.300	17.000	7.200	15.700	9.100	11.750	33.050	27.450	23.067	24.855
3 (A+B)	5.000	2.500	8.500	23.000	24.800	5.500	9.000	8.300	27.100	11.000	16.950	33.750	6.550	15.377	19.792

N 6 - XV - Anno 2024 -

FMso_x [kg/anno] - Flusso di massa di ossidi di zolfo

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

Valori

[kg/anno]

Graduatoria

Tutti i prodotti /
ciclo completo +
Atomizzato per terzi

3 A
Grès porcellanato /
ciclo parziale

3B
Altri prodotti /
ciclo parziale

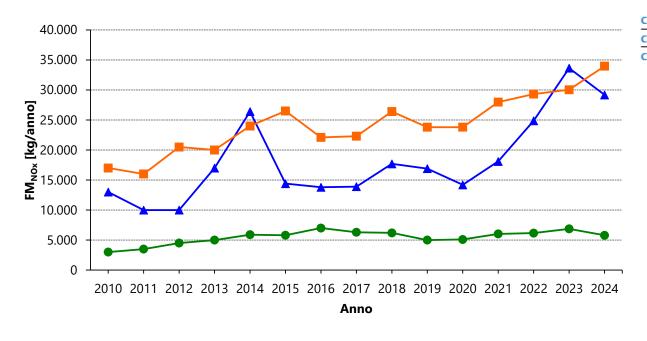
Graduatoria	Valori [kg/anno]	
1	23	
2	432	lev
3	707	cog
4	2.998	
5	8.062	cog + lev
6	17.014	cog
7	71.704	cog + lev
8	104.781	cog + lev

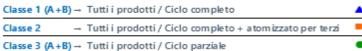
Graduatoria	Valori [kg/anno]	
1	441	cog
2	703	cog
3	822	lev
4	32.505	cog
5	55.379	cog + lev
6	59.281	cog

Graduatoria	Valori [kg/anno]	
1	2.173	
2	19.681	
3	37.520	lev

Graduatoria Valori [kg/anno]

Legenda:


cog = cogenerazione


N7 - XV - Anni 2010-2024

FMno_x [kg/anno] Flusso di massa di Ossidi di Azoto

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di		Anno													
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	13.000	10.000	10.000	17.000	26.400	14.400	13.800	13.900	17.700	16.900	14.200	18.100	24.900	33.633	29.177
2	17.000	16.000	20.500	20.000	24.000	26.500	22.100	22.300	26.400	23.800	23.800	28.000	29.300	30.042	33.967
3 (A+B)	3.000	3.500	4.500	5.000	5.900	5.800	7.000	6.300	6.200	5.000	5.100	6.000	6.200	6.866	5.797

N 7 - XV - Anno 2024 -

FMno_x [kg/anno] - Flusso di massa di ossidi di azoto

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[kg/anno]

7.934

Graduatoria

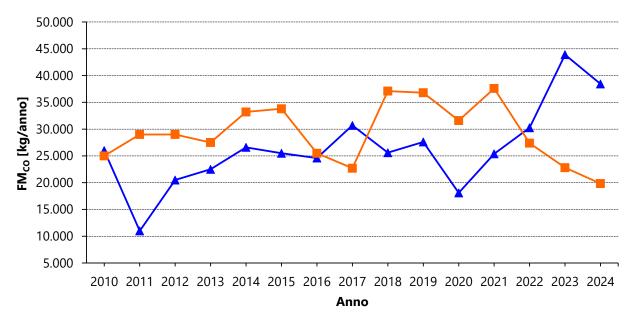
Graduatoria	Valori [kg/anno]	
1	1.258	cog
2	2.033	lev
3	6.927	
4	8.378	cog
5	12.397	cog
6	12.480	
7	15.593	cog + lev
8	18.245	
9	18.695	cog + lev
10	22.037	
11	25.277	cog + lev
12	26.586	cog
13	28.498	cog + lev
14	28.731	
15	47.057	cog + lev
16	48.046	cog
17	56.314	cog
18	99.863	cog
19	119.958	cog

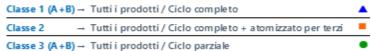
Graduatoria	Valori [kg/anno]	
1	2.724	
2	11.620	

Graduatoria	Valori [kg/anno]			
1	1.475	lev		
2	1.855	cog		
3	2.055	cog + lev		
4	2.958	cog		
5	3.580	cog + lev		
6	5.779	cog		
7	7.626	cog		
8	8.173	cog		
9	8.203			
10	8.224	lev		
11	15.299	cog		
12	16.491			
13	18.789	cog + lev		
14	19.327	cog		
15	21.931	lev		
16	24.456			
17	29.181			
18	29.555	cog		
19	31.457	cog + lev		
20	31.475	cog + lev		
21	32.514	cog		
22	38.413	cog		
23	40.513			
24	42.589	cog		
25	53.944	cog + lev		
26	68.714	cog + lev		
27	72.282	cog + lev		
28	112.270	cog		
29	235.928	cog		

Graduatoria	Valori [kg/anno]	
1	393	
2	575	
3	688	
4	704	
5	752	lev
6	990	
7	1.138	
8	1.273	
9	1.468	lev
10	2.644	
11	3.096	
12	3.100	
13	4.350	lev
15	4.625	
16	5.124	lev
17	5.273	
18	7.309	
19	7.619	
20	9.767	
21	10.403	
22	11.545	
23	13.905	
24	14.664	
25	17.770	
26	19.081	lev

Legenda:


cog = cogenerazione


N8 - XV - Anni 2010-2024

FMco [kg/anno] Flusso di massa di Monossido di Carbonio

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	26.000	11.000	20.500	22.500	26.600	25.500	24.600	30.700	25.600	27.600	18.100	25.400	30.300	43.902	38.439
2	25.000	29.000	29.000	27.500	33.200	33.800	25.500	22.700	37.100	36.800	31.600	37.600	27.400	22.806	19.836
3 (A+B)	n.d.														

Graduatoria

22

N 8 - XV - Anno 2024 -

FMco [kg/anno] - Flusso di massa di monossido di carbonio

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

Valori

Graduatoria

Tutti i prodotti / ciclo completo + Atomizzato per terzi

Valori

[kg/anno]

3A Grès porcellanato / ciclo parziale

Valori

[kg/anno]

3B Altri prodotti / ciclo parziale

Graduatoria

Valori Graduatoria [kg/anno]

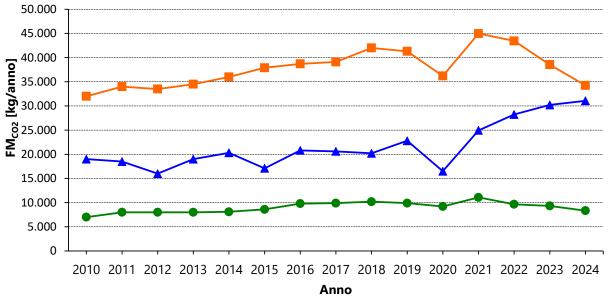
Graduatoria	Valori [kg/anno]	
1	998	cog + lev
2	2.624	
3	3.166	cog + lev
4	3.825	cog + lev
5	3.985	
6	8.865	cog
7	20.351	cog
8	25.142	cog + lev
9	61.079	cog + lev
10	61.821	cog
11	75.181	cog
12	96.483	cog
13	136.183	cog

[kg/anno]

411 cog 2 1.368 cog 1.427 cog 3 2.476 cog + lev 4 3.750 cog 5 3.772 cog + lev 6 7 4.027 cog + lev 8 4.426 cog 4.581 cog 9 10 6.585 cog 11 11.074 lev 12 14.056 cog 15.920 cog 13 14 16.874 cog + lev 17.849 cog + lev 15 24.644 cog 16 17 27.985 cog + lev 28.003 18 45.548 cog 19 47.895 cog + lev 20 21 61.528 cog

92.196 cog + lev

<u>Legenda:</u>


cog = cogenerazione

N9 - XV - Anni 2010-2024

FMco₂ [t/anno] Flusso di massa di Anidride carbonica

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di		Anno													
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	19.000	18.500	16.000	19.000	20.300	17.100	20.800	20.600	20.200	22.800	16.500	24.950	28.200	30.209	31.061
2	32.000	34.000	33.500	34.500	36.000	37.900	38.700	39.100	42.000	41.300	36.200	44.950	43.450	38.548	34.251
3 (A+B)	7.000	8.000	8.000	8.000	8.100	8.600	9.800	9.900	10.200	9.900	9.200	11.050	9.650	9.324	8.337

N 9 - XV - Anno 2024 -

FMco₂ [kg/anno] - Flusso di massa di anidride carbonica da combustione di gas naturale (CO₂)

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria	Valori [t/anno]	
1	9.492	
2	12.888	cog
3	13.220	lev
4	15.297	cog
5	16.750	
6	20.292	
7	22.741	cog + lev
8	23.716	
9	23.790	cog + lev
10	24.993	
11	28.189	cog + lev
12	32.914	cog
13	36.603	cog
14	43.505	cog + lev
15	43.601	cog
16	44.585	cog + lev
17	44.767	cog
18	67.014	cog
19	108.096	cog

Graduatoria	Valori [t/anno]	
1	3.785	
2	16.042	

Graduatoria	Valori	
Gradatoria	[t/anno]	
1	1.370	
2	13.890	cog
3	15.232	cog
4	16.124	cog
5	18.704	lev
6	19.053	cog
7	19.342	cog + lev
8	21.196	
9	21.504	lev
10	23.061	
11	29.298	cog + lev
12	29.540	cog
13	31.073	lev
14	34.808	cog
15	34.820	cog
16	36.103	cog + lev
17	37.100	cog
18	37.388	
19	39.102	cog + lev
20	39.299	cog + lev
21	40.751	cog
22	42.452	cog
23	43.595	
24	45.168	cog + lev
25	48.073	cog + lev
26	48.800	cog
27	49.625	
28	59.832	cog
29	65.092	cog + lev
30	66.147	cog

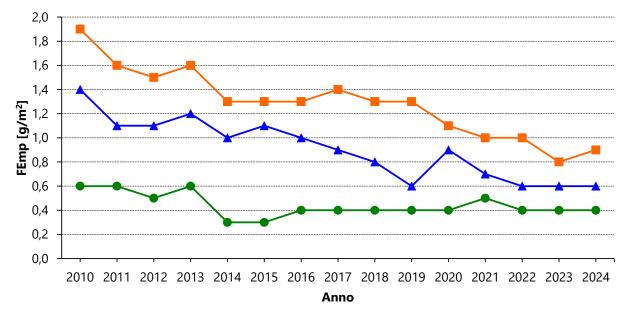
Graduatoria	Valori [t/anno]	
1	2.331	
2	2.821	
3	4.003	
4	4.559	
5	4.594	
6	4.690	
7	4.883	
8	5.018	
9	5.101	
10	5.405	lev
11	5.596	
12	6.138	lev
13	7.198	
14	7.581	
15	7.997	
16	8.061	lev
17	9.029	
18	9.798	
19	9.946	
20	11.248	
21	11.998	
22	12.160	
23	13.207	lev
24	13.529	
25	13.951	lev
26	17.466	

Graduatoria	Valori [t/anno]	
1	2.593	
2	22.535	

<u>Legenda:</u>

cog = cogenerazione

N10 - XV - Anni 2010-2024


FEmp

[g/m²]

Fattore di emissione di materiale particellato

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di	sse di Anno														
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	1,4	1,1	1,1	1,2	1,0	1,1	1,0	0,9	0,8	0,6	0,9	0,7	0,6	0,6	0,6
2	1,9	1,6	1,5	1,6	1,3	1,3	1,3	1,4	1,3	1,3	1,1	1,0	1,0	0,8	0,9
3 (A+B)	0,6	0,6	0,5	0,6	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,5	0,4	0,4	0,4

N 10 - XV - Anno 2024 -

FEmp [g/m²] - Fattore di emissione di materiale particellare

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria	Valori [g/m2]	
1	0,18	
2	0,21	cog
3	0,25	
4	0,30	
5	0,32	cog
6	0,33	cog + lev
7	0,39	cog + lev
8	0,39	cog
9	0,50	cog + lev
10	0,53	cog
11	0,59	cog + lev
12	0,61	cog
13	0,68	cog + lev
14	0,71	cog
15	0,86	lev
16	1,00	cog
17	1,02	
18	1,27	
19	1,59	cog

Graduatoria	Valori [g/m2]	
1	0,13	
2	0,18	

Graduatoria	Valori [g/m2]	
1	0,22	cog
2	0,24	lev
3	0,35	
4	0,35	cog
5	0,41	
6	0,46	lev
7	0,47	cog
8	0,50	cog
9	0,51	cog + lev
10	0,56	cog
11	0,58	lev
12	0,58	cog + lev
13	0,60	
14	0,68	cog
15	0,69	cog + lev
16	0,72	cog
17	0,73	cog + lev
18	0,74	cog + lev
19	0,77	cog
20	0,79	cog
21	0,87	cog
22	0,87	cog
23	0,95	
24	1,10	
25	1,45	cog + lev
26	1,51	cog + lev
27	1,91	cog + lev
28	2,18	cog
29	2,42	cog
30	2,76	

Graduatoria	Valori	
1	[g/m2]	lav
1	0,07	lev
2	0,09	
3	0,10	
4	0,11	
5	0,13	
6	0,14	
7	0,14	
8	0,15	lev
9	0,19	
10	0,19	
11	0,21	lev
12	0,21	
13	0,24	
14	0,27	
15	0,35	
16	0,40	
17	0,43	
18	0,48	
19	0,58	
20	0,61	lev
21	0,62	
22	0,71	
23	0,83	
24	0,98	lev
25	1,33	
26	1,68	

Graduatoria	Valori [g/m2]	
1	0,13	
2	0,33	

<u>Legenda:</u>

cog = cogenerazione

N11 - XV - Anni 2010-2024

FEf

[g/m²]

Fattore di emissione di composti del fluoro

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di	e di Anno														
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	0,13	0,13	0,11	0,12	0,11	0,10	0,11	0,08	0,09	0,10	0,09	0,08	0,08	0,09	0,08
2	0,09	0,10	0,10	0,09	0,09	0,09	0,09	0,08	0,07	0,09	0,08	0,08	0,07	0,06	0,06
3 (A+B)	0,09	0,09	0,10	0,09	0,08	0,07	0,07	0,05	0,07	0,07	0,07	0,09	0,08	0,05	0,07

N 11 - XV - Anno 2024 -

FEf [g/m²] - Fattore di emissione di composti del fluoro

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[g/m2] 0,049 0,086

Graduatoria

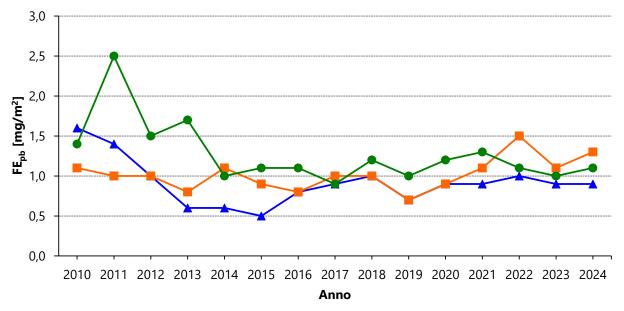
Graduatoria	Valori [g/m2]	
1	0,015	cog + lev
2	0,017	cog + lev
3	0,017	cog + lev
4	0,025	
5	0,031	cog
6	0,033	cog
7	0,037	cog
8	0,038	cog
9	0,040	cog
10	0,053	cog + lev
11	0,061	
12	0,067	cog
13	0,072	
14	0,077	
15	0,111	cog
16	0,112	lev
17	0,186	
18	0,201	cog + lev
19	0,299	cog

Valori [g/m2]	
0,037	
0,172	
0,172	
	[g/m2] 0,037

Graduatoria	Valori [g/m2]	
1	0,007	cog + lev
2	0,012	cog
3	0,012	
4	0,019	cog
5	0,020	
6	0,021	lev
7	0,022	cog + lev
8	0,027	cog
9	0,028	cog
10	0,036	cog + lev
11	0,038	cog + lev
12	0,047	cog
13	0,049	cog
14	0,050	
15	0,063	cog + lev
16	0,064	
17	0,070	
18	0,071	cog + lev
19	0,080	cog
20	0,081	cog
21	0,086	
22	0,088	lev
23	0,089	cog
24	0,097	cog
25	0,100	cog + lev
26	0,109	cog + lev
27	0,115	cog
28	0,126	cog
29	0,150	cog

Graduatoria	Valori [g/m2]	
1	0,012	lev
2	0,016	lev
3	0,018	
4	0,018	
5	0,019	
6	0,021	
7	0,025	
8	0,029	
9	0,034	
10	0,043	
11	0,044	
12	0,064	lev
13	0,075	lev
14	0,079	
15	0,082	lev
16	0,083	
17	0,083	
18	0,086	
19	0,086	
20	0,091	
21	0,091	
22	0,100	
23	0,101	
24	0,197	
25	0,221	

Legenda:


cog = cogenerazione

N12 - XV - Anni 2010-2024

FEpb [mg/m²] Fattore di emissione di composti del piombo

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	1,6	1,4	1,0	0,6	0,6	0,5	0,8	0,9	1,0	0,7	0,9	0,9	1,0	0,9	0,9
2	1,1	1,0	1,0	0,8	1,1	0,9	0,8	1,0	1,0	0,7	0,9	1,1	1,5	1,1	1,3
3 (A+B)	1,4	2,5	1,5	1,7	1,0	1,1	1,1	0,9	1,2	1,0	1,2	1,3	1,1	1,0	1,1

N 12 - XV - Anno 2024 -

FEpb [mg/m²] - Fattore di emissione di composti del piombo

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[mg/m2]

2,98

Graduatoria

Graduatoria	Valori [mg/m2]	
1	0,001	cog + lev
2	0,076	cog
3	0,12	cog
4	0,15	
5	0,18	cog + lev
6	0,24	cog
7	0,25	
8	0,27	cog
9	0,28	
10	0,29	cog + lev
11	0,45	
12	0,57	cog + lev
13	0,83	
14	1,08	cog
15	1,34	cog
16	1,81	cog
17	1,89	cog + lev
18	2,69	cog
19	3,12	lev

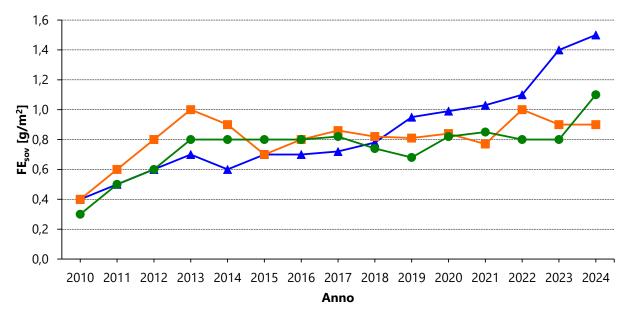
Graduatoria	Valori [mg/m2]	
1	0,88	
2	0,90	

Graduatoria	Valori [mg/m2]			
1	0,004	cog		
2	0,01	cog + lev		
3	0,15			
4	0,18	cog		
5	0,20	cog		
6	0,21			
7	0,23			
8	0,23	cog		
9	0,30	lev		
10	0,31	cog		
11	0,40			
12	0,41	cog + lev		
13	0,68	cog		
14	0,68	cog		
15	0,69	cog		
16	0,76	cog + lev		
17	1,09			
18	1,29	cog + lev		
19	1,52	cog		
20	1,84	lev		
21	2,21	cog		
22	2,68	cog + lev		
23	2,68			
24	4,25	cog		
25	5,45	cog		
26	6,10	cog + lev		

Graduatoria	Valori [mg/m2]	
1	0,02	
2	0,17	lev
3	0,18	lev
4	0,23	
5	0,25	
6	0,27	
7	0,28	lev
8	0,33	
9	0,41	
10	0,49	
11	0,50	
12	0,63	
13	0,65	
14	0,70	
15	0,88	
16	0,96	
17	0,96	
18	1,41	lev
19	1,70	
20	2,10	
21	2,34	
22	2,57	lev
23	3,80	
24	4,14	

Legenda:

cog = cogenerazione


N13 - XV - Anni 2010-2024

FEsov

[g/m²] Fattore di emissione di Sostanze Organiche Volatili

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	0,4	0,5	0,6	0,7	0,6	0,7	0,7	0,7	0,8	1,0	1,0	1,0	1,1	1,4	1,5
2	0,4	0,6	0,8	1,0	0,9	0,7	0,8	0,9	0,8	0,8	0,8	0,8	1,0	0,9	0,9
3 (A+B)	0,3	0,5	0,6	0,8	0,8	0,8	0,8	0,8	0,7	0,7	0,8	0,9	0,8	0,8	1,1

Classe 3 (A+B) → Tutti i prodotti / Ciclo parziale

N 13 - XV - Anno 2024 -

FEsov [g/m²] - Fattore di emissione di sostanze organiche volatili

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[g/m2]

1,10

Graduatoria

Graduatoria	Valori [g/m2]	
1	0,15	cog + lev
2	0,35	cog + lev
3	0,47	cog
4	0,63	cog
5	0,67	cog + lev
6	0,69	
7	0,79	cog
8	0,81	cog
9	1,06	
10	1,17	cog
11	1,24	cog
12	1,29	cog + lev
13	1,47	cog
14	1,61	lev
15	1,76	cog + lev
16	2,01	cog
17	2,81	
18	3,91	
19	5,05	

Graduatoria	Valori [g/m2]	
1	0,25	
2	3,15	

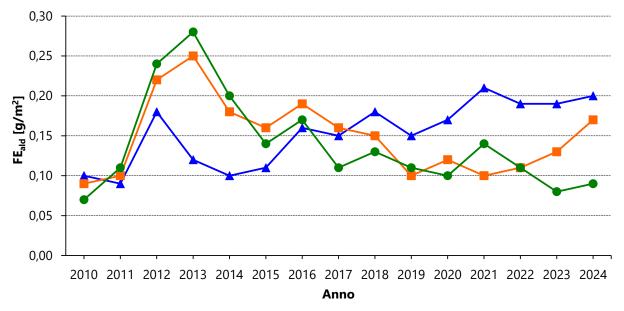
Graduatoria	Valori [g/m2]	
1	0,16	
2	0,23	cog + lev
3		cog
4		cog
5		cog + lev
6	0,56	lev
7	0,66	cog
8	0,67	cog + lev
9	0,68	cog + lev
10		cog
11	0,68	cog
12	0,71	cog
13	0,74	
14	0,75	cog
15	0,78	cog + lev
16	0,89	
17	0,94	
18	0,97	cog
19	1,11	cog
20	1,21	cog + lev
21	1,31	cog
22	1,34	cog + lev
23	1,35	cog
24	1,35	
25	1,40	cog
26	1,66	lev
27	2,31	cog

	Valori	
Graduatoria	[g/m2]	
1	0,12	
2	0,16	
3	0,20	
4	0,30	
5	0,33	
6	0,59	
7	0,65	
8	0,69	lev
9	0,71	
10	0,80	lev
11	0,83	
12	0,84	
13	0,96	
14	1,03	lev
15	1,08	
16	1,14	
17	1,27	
18	1,33	
19	1,39	
20	1,45	
21	1,63	lev
22	1,88	lev
23	1,94	
24	1,94	
25	2,51	
26	2,74	

<u>Legenda:</u>

cog = cogenerazione

N14 - XV - Anni 2010-2024


FEald

[g/m²]

Fattore di emissione di Aldeidi

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	0,10	0,09	0,18	0,12	0,10	0,11	0,16	0,15	0,18	0,15	0,17	0,21	0,19	0,19	0,20
2	0,09	0,10	0,22	0,25	0,18	0,16	0,19	0,16	0,15	0,10	0,12	0,10	0,11	0,13	0,17
3 (A+B)	0,07	0,11	0,24	0,28	0,20	0,14	0,17	0,11	0,13	0,11	0,10	0,14	0,11	0,08	0,09

Classe 1 (A+B) → Tutti i prodotti / Ciclo completo

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 14 - XV - Anno 2024 -

FEald [g/m²] - Fattore di emissione di aldeidi

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[g/m2]

0,09

Graduatoria

Graduatoria	Valori [g/m2]	
1	0,005	cog + lev
2	0,01	cog + lev
3	0,01	cog
4	0,01	cog
5	0,01	
6	0,03	cog + lev
7	0,05	
8	0,07	cog + lev
9	0,08	cog
10	0,08	cog
11	0,09	cog + lev
12	0,09	cog
13	0,09	cog
14	0,11	
15	0,13	cog
16	0,15	cog
17	0,16	lev
18	0,96	
19	1,88	

Graduatoria	Valori [g/m2]	
1	0,04	
2	0,16	

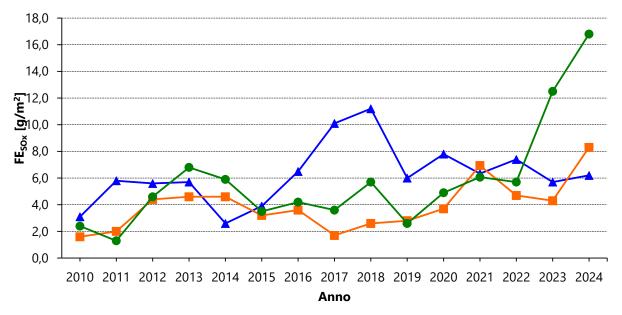
Graduatoria	Valori [g/m2]	
1	0,001	cog
2	0,020	cog
3	0,025	cog + lev
4	0,041	cog + lev
5	0,06	cog
6	0,06	
7	0,08	lev
8	0,08	cog
9	0,08	cog
10	0,08	cog
11	0,09	cog
12	0,11	cog + lev
13	0,11	
14	0,12	
15	0,13	
16	0,17	cog + lev
17	0,17	
18	0,17	cog
19	0,18	cog
20	0,18	cog + lev
21	0,21	cog
22	0,23	cog
23	0,25	cog + lev
24	0,26	cog
25	0,44	cog
26	0,48	cog + lev
27	0,65	lev

Graduatoria	Valori [g/m2]	
1	0,01	
2	0,01	
3	0,01	
4	0,01	
5	0,01	
6	0,01	lev
7	0,01	
8	0,04	
9	0,04	lev
10	0,06	
11	0,06	
12	0,06	
13	0,07	
14	0,07	lev
15	0,07	
16	0,08	
17	0,11	
18	0,13	
19	0,14	
20	0,15	
21	0,17	lev
22	0,18	lev
23	0,28	
24	0,39	

Legenda:

cog = cogenerazione

N15 - XV - Anni 2010-2024


FEso_x

 $[g/m^2]$

Fattore di emissione di Ossidi di Zolfo

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	3,1	5,8	5,6	5,7	2,6	3,9	6,5	10,1	11,2	6,0	7,8	6,3	7,4	5,7	6,2
2	1,6	2,0	4,4	4,6	4,6	3,2	3,6	1,7	2,6	2,8	3,7	6,9	4,7	4,3	8,3
3 (A+B)	2,4	1,3	4,6	6,8	5,9	3,5	4,2	3,6	5,7	2,6	4,9	6,1	5,7	12,5	16,8

Classe 1 (A+B) → Tutti i prodotti / Ciclo completo

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 15 - XV - Anno 2024 -

FEso_x [g/m²] - Fattore di emissione di ossidi di zolfo

1A Grès porcellanato / ciclo completo

Valori

[g/m2]

0,004

0,17 cog

0,20 lev

10,08 cog

1,43 cog + lev

16,54 cog + lev

20,08 cog + lev

1,26

1B Altri prodotti / ciclo completo

Valori Graduatoria [g/m2]

Tutti i prodotti / ciclo completo + Atomizzato per terzi

Graduatoria	Valori [g/m2]	
1	0,07	cog
2	0,19	cog
3	0,26	lev
4	9,70	cog + lev
5	10,69	cog
6	28,66	cog

3A Grès porcellanato / ciclo parziale

Valori Graduatoria [g/m2] 2 21,64 lev 26,01 3

3B Altri prodotti / ciclo parziale

Valori Graduatoria [g/m2]

Legenda:

cog = cogenerazione

lev = Levigatura

Graduatoria

2

3

4

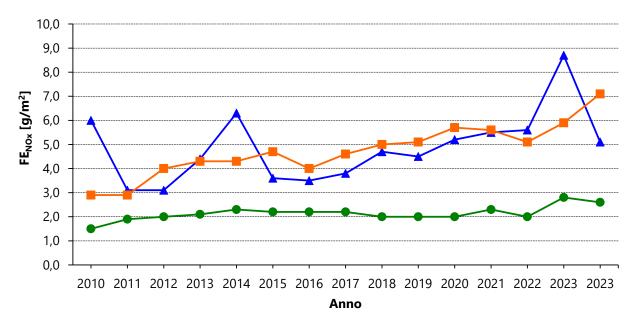
5

6

7

8

N16 - XV - Anni 2010-2024


FEno_x

[g/m²]

Fattore di emissione di Ossidi di Azoto

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	6,0	3,1	3,1	4,4	6,3	3,6	3,5	3,8	4,7	4,5	5,2	5,5	5,6	8,7	5,1
2	2,9	2,9	4,0	4,3	4,3	4,7	4,0	4,6	5,0	5,1	5,7	5,6	5,1	5,9	7,1
3 (A+B)	1,5	1,9	2,0	2,1	2,3	2,2	2,2	2,2	2,0	2,0	2,0	2,3	2,0	2,8	2,6

Classe 1 (A+B) → Tutti i prodotti / Ciclo completo

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 16 - XV - Anno 2024 -

FEno_x [g/m²] - Fattore di emissione di ossidi di azoto

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B				
Altri prodotti /				
ciclo parziale				

Valori

[g/m2]

1,15

Graduatoria

Graduatoria	Valori [g/m2]	
1	0,53	cog
2	0,95	lev
3	1,85	cog
4	2,54	cog + lev
5	2,92	
6	3,08	
7	3,32	cog + lev
8	3,95	
9	5,46	cog + lev
10	5,78	
11	6,25	cog
12	7,08	cog + lev
13	7,34	cog
14	7,43	cog + lev
15	7,65	cog
16	8,35	cog
17	8,83	
18	8,99	cog
19	9,29	cog

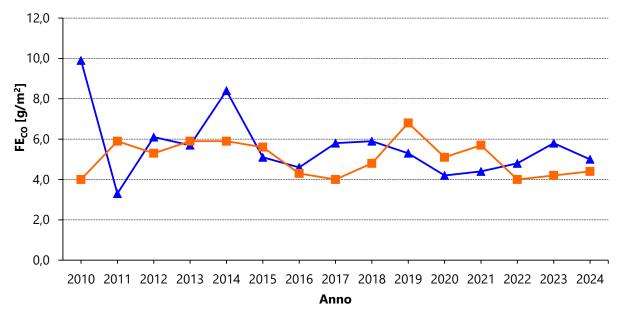
Graduatoria	Valori [g/m2]	
1	1,37	
2	3,41	

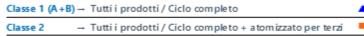
Graduatoria	Valori	
Gradatoria	[g/m2]	
1	0,30	lev
2	0,60	cog
3	0,83	cog + lev
4	0,84	cog + lev
5	0,91	cog
6	1,17	
7	1,22	cog
8	1,43	cog
9	2,57	lev
10	2,64	cog
11	2,97	
12	3,45	cog
13	4,82	cog + lev
14	4,89	cog
15	6,32	cog + lev
16	6,69	
17	6,93	cog
18	7,79	lev
19	7,92	cog + lev
20	8,40	
21	8,80	cog + lev
22	10,07	cog
23	10,22	
24	12,03	cog + lev
25	14,27	cog
26	15,62	cog + lev
27	17,04	cog
28	21,84	cog
29	24,21	cog

Graduatoria	Valori [g/m2]	
1	0,18	lev
2	0,19	
3	0,25	
4	0,28	
5	0,31	
6	0,64	lev
7	0,74	
8	0,87	
9	1,23	
10	1,56	
11	1,67	
12	1,96	
13	2,14	
14	2,33	lev
15	2,51	lev
16	3,23	
17	3,56	
18	3,57	
19	4,12	
20	4,16	
21	4,45	
22	4,62	
23	5,24	
24	8,91	
25	11,13	lev

Legenda:

cog = cogenerazione


N17 - XV - Anni 2010-2024


FEco

[g/m²] Fattore di emissione di Monossido di Carbonio

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	9,9	3,3	6,1	5,7	8,4	5,1	4,6	5,8	5,9	5,3	4,2	4,4	4,8	5,8	5,0
2	4,0	5,9	5,3	5,9	5,9	5,6	4,3	4,0	4,8	6,8	5,1	5,7	4,0	4,2	4,4
3 (A+B)	n.d.														

N 17 - XV - Anno 2024 -

FEco [g/m²] - Fattore di emissione di monossido di carbonio

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

Valori

[g/m2]

Graduatoria

Tutti i prodotti / ciclo completo + Atomizzato per terzi

3 A
Grès porcellanato /
ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria	Valori
Graduatoria	[g/m2]

Cuaduataria	Valori	
Graduatoria	[a/m2]	

Graduatoria	Valori [g/m2]	
1	0,28	cog + lev
2	0,53	
3	0,61	cog + lev
4	0,62	cog + lev
5	0,67	
6	1,95	cog
7	3,97	cog + lev
8	4,79	cog
9	8,68	cog
10	9,48	cog
11	9,85	cog
12	10,86	cog + lev
13	12,40	coq

Graduatoria	Valori [g/m2]	
1	0,19	cog
2	0,46	cog
3	0,58	cog + lev
4	0,60	cog
5	0,70	cog
6	0,76	cog + lev
7	0,79	cog
8	0,98	cog
9	1,62	cog + lev
10	1,63	cog
11	1,82	cog
12	1,85	cog + lev
13	2,54	cog
14	3,41	
15	3,93	lev
16	4,08	cog
17	4,58	cog + lev
18	7,83	cog + lev
19	8,39	cog + lev

20

21

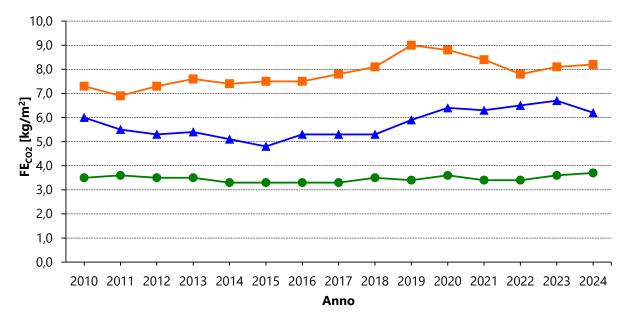
22

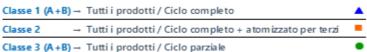
10,77 cog

11,97 cog

26,69 cog + lev

<u>Legenda:</u>


cog = cogenerazione


N18 - XV - Anni 2010-2024

FEco₂ [kg/m²] Fattore di emissione di Anidride carbonica

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di		Anno													
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	6,0	5,5	5,3	5,4	5,1	4,8	5,3	5,3	5,3	5,9	6,4	6,3	6,5	6,7	6,2
2	7,3	6,9	7,3	7,6	7,4	7,5	7,5	7,8	8,1	9,0	8,8	8,4	7,8	8,1	8,2
3 (A+B)	3,5	3,6	3,5	3,5	3,3	3,3	3,3	3,3	3,5	3,4	3,6	3,4	3,4	3,6	3,7

N 18 - XV - Anno 2024 -

FEco₂ [kg/m²] - Fattore di emissione di anidride carbonica da combustione di gas naturale (CO₂)

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[kg/m2] 3,27 3,93

Graduatoria

Graduatoria	Valori [kg/m2]	
1	2,83	
2	4,08	
3	4,20	
4	4,36	cog + lev
5	5,01	cog + lev
6	6,03	cog
7	6,18	lev
8	6,39	cog
9	6,66	cog + lev
10	6,87	cog + lev
11	6,95	cog
12	7,27	cog + lev
13	7,38	cog
14	7,52	cog
15	7,63	cog
16	7,74	cog
17	7,92	
18	8,07	cog
19	9,50	

	Valori [kg/m2]	Graduatoria
	1,89	1
	4,73	2
	4,73	2

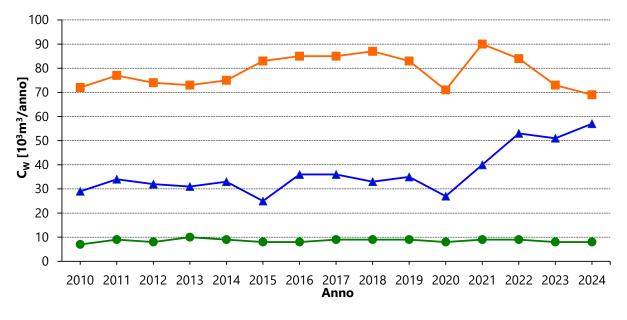
Graduatoria	Valori	
	[kg/m2]	
1	5,30	
2	5,33	cog
3	6,14	cog
4	6,17	
5	6,39	lev
6	6,39	cog
7	6,64	lev
8	6,71	lev
9	6,77	cog
10	6,80	cog
11	6,85	cog
12	7,02	cog
13	7,08	cog
14	7,10	
15	7,14	cog + lev
16	7,26	cog
17	7,39	cog
18	7,80	cog + lev
19	7,91	cog + lev
20	8,07	
21	8,20	cog + lev
22	8,49	cog + lev
23	9,24	
24	9,63	cog
25	9,66	cog + lev
26	10,04	cog + lev
27	10,80	
28	11,38	cog + lev
29	15,74	cog
30	16,80	cog

Graduatoria	Valori	
	[kg/m2]	
1	2,63	
2	2,72	
3	2,74	
4	2,82	
5	2,84	
6	2,85	
7	3,08	
8	3,09	
9	3,15	lev
10	3,20	
11	3,42	lev
12	3,45	
13	3,48	
14	3,54	lev
15	3,66	lev
16	3,75	
17	3,80	
18	3,80	
19	3,86	
20	3,98	
21	4,10	
22	4,39	
23	4,84	
24	5,06	
25	5,73	lev
26	6,25	

Legenda:

cog = cogenerazione

N19 - XV - Anni 2010-2024


Cw

[1.000m³/anno]

Consumo idrico annuo

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	29	34	32	31	33	25	36	36	33	35	27	40	53	51	57
2	72	77	74	73	75	83	85	85	87	83	71	90	84	73	69
3 (A+B)	7	9	8	10	9	8	8	9	9	9	8	9	9	8	8

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 19 - XV - Anno 2024 -

Cw [10³m³ /anno] - Consumo idrico annuo

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[10 ³ m3/anno]

4,18 8,50

Graduatoria

Graduatoria	Valori [10 ³ m3/anno]	
1	11,98	
2	13,33	lev
3	29,18	cog
4	32,70	cog
5	34,45	
6	41,02	
7	46,34	
8	47,14	
9	48,06	cog
10	48,47	cog + lev
11	49,18	cog + lev
12	68,07	cog + lev
13	75,89	cog
14	79,29	cog + lev
15	83,09	cog + lev
16	83,53	cog
17	85,87	cog
18	139,00	cog
19	167,22	cog

Graduatoria	Valori [10 ³ m3/anno]	
1	4,79	
2	10,76	·

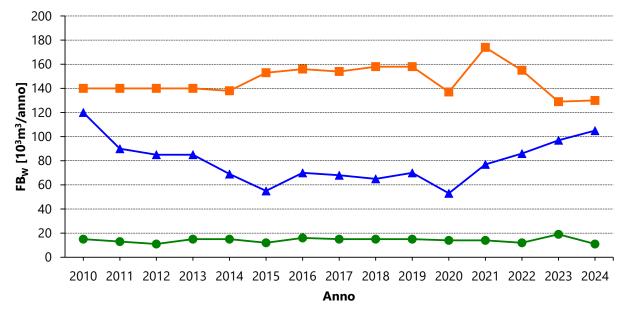
Graduatoria	Valori [10 ³ m3/anno]	
1	13,67	
2	19,33	cog
3	26,65	cog
4	27,02	cog
5	32,81	cog
6	39,14	cog + lev
7	42,99	lev
8	43,03	cog
9	43,13	
10	44,60	cog
11	51,84	cog + lev
12	52,43	cog + lev
13	61,95	cog
14	71,59	cog
15	74,49	cog + lev
16	74,53	cog
17	76,71	cog
18	76,73	lev
19	76,79	cog
20	77,91	
21	78,57	lev
22	86,35	cog + lev
23	91,65	
24	94,16	cog + lev
25	99,07	cog + lev
26	100,70	
27	101,09	cog
28	106,86	cog
29	112,29	cog + lev
30	156,95	

Graduatoria	Valori [10 ³ m3/anno]	
1	2,05	
2	2,07	
3	2,15	
4	2,23	
5	2,77	
6	3,14	
7	4,45	
8	4,72	
9	5,02	
10	5,39	
11	6,50	
12	6,57	
13	6,81	lev
14	6,93	
15	7,23	
16	7,40	
17	7,91	
18	8,58	
19	9,51	lev
20	11,21	lev
21	11,94	
22	13,51	lev
23	14,46	
24	16,05	
25	18,53	lev
26	26,64	

Legenda:

cog = cogenerazione

N20 - XV - Anni 2010-2024


FBw

[1.000 m³/anno]

Fabbisogno idrico annuo

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	120	90	85	85	69	55	70	68	65	70	53	77	86	97	105
2	140	140	140	140	138	153	156	154	158	158	137	174	155	129	130
3 (A+B)	15	13	11	15	15	12	16	15	15	15	14	14	12	19	11

Classe 1 (A+B) → Tutti i prodotti / Ciclo completo

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 20 - XV - Anno 2024 -

FBw [10³m³/anno] - Fabbisogno idrico annuo

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria

Valori

[**10** ³ m3/anno]

4,61 8,50

Graduatoria	Valori [10 ³ m3/anno]	
1	14,20	
2	18,19	lev
3	44,97	
4	51,33	
5	58,36	cog
6	61,23	cog
7	71,82	cog + lev
8	76,75	
9	85,46	
10	92,33	cog + lev
11	106,72	cog + lev
12	108,33	cog
13	111,09	cog + lev
14	128,18	cog + lev
15	155,90	cog
16	170,91	cog
17	224,96	cog
18	230,34	cog
19	371,22	cog

Craduatoria	Valori	
Graduatoria	[10 ³ m3/anno]	
1	7,52	
2	15,08	

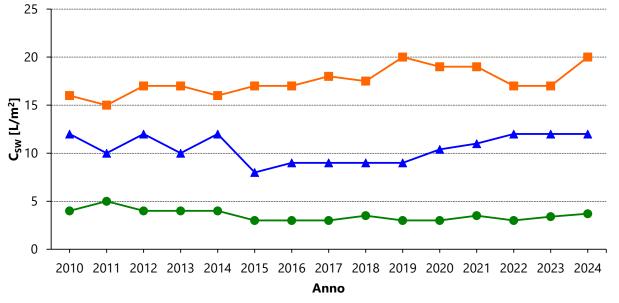
Graduatoria	Valori	
Graduatoria	[10 ³ m3/anno]	
1	14,72	
2	19,33	cog
3	61,57	cog
4	68,23	cog
5	69,50	cog + lev
6	76,31	cog + lev
7	77,63	cog
8	98,05	cog + lev
9	98,16	
10	102,84	cog
11	104,43	lev
12	108,34	cog
13	111,52	cog
14	111,90	cog
15	113,50	cog + lev
16	115,09	cog + lev
17	118,93	lev
18	130,02	cog + lev
19	131,40	cog
20	137,07	cog + lev
21	140,73	cog
22	151,48	
23	155,50	
24	165,87	
25	182,26	cog
26	192,95	cog + lev
27	196,59	cog
28	250,72	cog
29	252,70	lev
30	338,22	

Graduatoria	Valori	
Gradatoria	[10 ³ m3/anno]	
1	2,23	
2	2,77	
3	3,14	
4	3,41	
5	5,02	
6	5,39	
7	5,89	
8	6,50	
9	6,57	
10	6,93	
11	7,91	
12	8,90	
13	9,83	
14	11,93	
15	12,27	lev
16	13,51	lev
17	13,63	lev
18	14,87	
19	15,82	
20	18,53	lev
21	18,59	
22	19,72	lev
23	22,55	
24	23,62	
25	26,64	

<u>Legenda:</u>

cog = cogenerazione

N21 - XV - Anni 2010-2024


Csw

[L/m²]

Consumo idrico specifico

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	12	10	12	10	12	8	9	9	9	9	10	11	12	12	12
2	16	15	17	17	16	17	17	18	17,5	20	19	19	17	17	20
3 (A+B)	4	5	4	4	4	3	3	3	3,5	3	3	3,5	3	3	4

Classe 1 (A+B) → Tutti i prodotti / Ciclo completo

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 21 - XV - Anno 2024 -

Csw [L/m²] - Consumo idrico specifico

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B				
Altri prodotti /				
ciclo parziale				

Valori

[L/m2]

6,34

Graduatoria

Graduatoria	Valori [L/m2]	
1	2,02	
2	6,23	lev
3	6,93	
4	8,74	cog + lev
5	11,10	cog + lev
6	11,30	cog
7	11,64	cog
8	12,09	cog
9	12,51	cog
10	13,11	cog + lev
11	13,57	cog + lev
12	13,66	cog
13	14,16	cog
14	14,93	
15	15,20	cog + lev
16	17,28	cog
17	18,15	
18	18,41	cog
19	18,57	

Graduatoria	Valori [L/m2]	
1	1,27	
2	5,99	

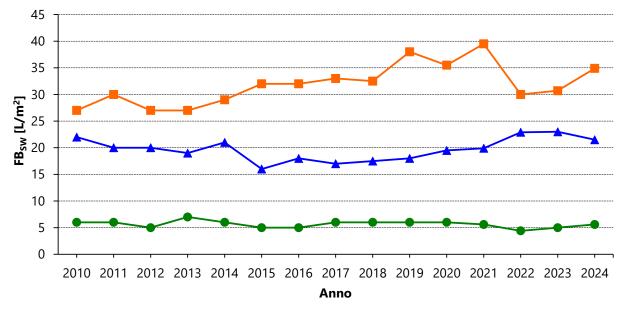
Graduatoria	Valori [L/m2]	
1	4,42	cog
2	5,25	cog
3	9,46	cog
4	9,48	
5	11,06	cog
6	11,09	cog
7	11,70	cog
8	12,18	cog + lev
9	12,31	cog + lev
10	12,33	cog
11	13,85	cog
12	14,65	cog
13	14,67	cog + lev
14	15,10	
15		cog + lev
16	15,27	lev
17	15,79	cog + lev
18	15,91	cog
19	16,15	lev
20	16,63	
21	16,72	cog
22	19,90	cog + lev
23	21,57	cog + lev
24	22,46	
25	23,96	lev
26	24,17	cog + lev
27	34,68	cog
28	39,32	cog
29	46,69	
30	92,20	

Valori [L/m2]	
1,51	
1,56	
1,64	
1,91	
1,98	
1,98	
2,03	
2,40	
2,45	
2,53	
2,75	
2,84	
3,38	
3,44	
3,55	
3,93	lev
4,51	
4,54	lev
4,86	lev
5,55	lev
5,62	
5,80	
5,85	
6,14	lev
6,67	
6,89	
	[L/m2] 1,51 1,56 1,64 1,91 1,98 2,03 2,40 2,45 2,53 2,75 2,84 3,38 3,44 3,55 3,93 4,51 4,54 4,86 5,55 5,62 5,80 5,85 6,14 6,67

Legenda:

cog = cogenerazione

N22 - XV - Anni 2010-2024


FBsw

[L/m²]

Fabbisogno idrico specifico

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

cClasse								Anno							
di Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	22	20	20	19	21	16	18	17	17,5	18	19,5	20	23	23	21,5
2	27	30	27	27	29	32	32	33	32,5	38	35,5	39,5	30	31	35
3 (A+B)	6	6	5	7	6	5	5	6	6	6	6	6	4	5	6

Classe 1 (A+B) → Tutti i prodotti / Ciclo completo

→ Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 22 - XV - Anno 2024 -

FBsw [L/m²] - Fabbisogno idrico specifico

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B				
Altri prodotti /				
ciclo parziale				

Valori

[L/m2]

1,23 6,99

Graduatoria

Graduatoria	Valori [L/m2]	
1	2,40	
2	8,50	lev
3	10,33	
4	15,66	cog
5	16,41	cog + lev
6	18,11	cog + lev
7	19,90	
8	20,11	cog + lev
9	20,23	cog + lev
10	20,46	cog + lev
11	20,73	cog
12	23,87	cog
13	24,83	cog
14	25,58	cog
15	27,07	
16	30,75	
17	34,56	cog
18	40,19	cog
19	61,23	cog

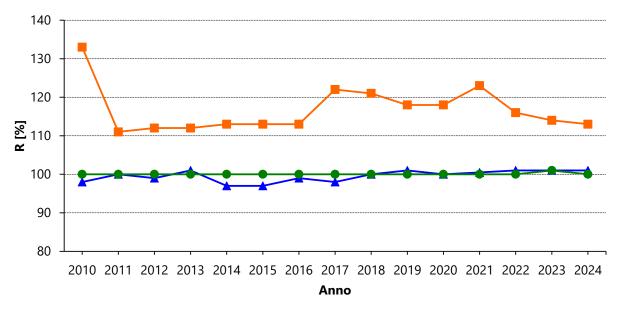
Graduatoria	Valori [L/m2]	
1	1,78	
2	9,41	

Graduatoria	Valori [L/m2]	
1	9,46	cog
2	14,25	cog + lev
3	16,34	cog + lev
4	16,65	cog
5	18,66	cog
6	18,87	cog
7	20,00	cog
8	20,17	
9	21,74	cog
10	24,00	cog + lev
11	25,17	cog + lev
12	25,39	cog
13	25,68	
14	25,73	cog
15	26,37	cog
16	29,86	cog
17	29,94	cog
18	30,79	cog + lev
19	31,77	cog + lev
20	32,60	lev
21	33,32	cog + lev
22	34,37	
23	38,76	cog + lev
24	42,24	lev
25	48,39	
26	51,95	lev
27	68,44	cog
28	77,16	
29	88,88	cog
30	99,27	

Valori [L/m2]	
1,51	
1,56	
1,64	
1,91	
2,03	
2,39	
2,45	
3,16	
3,30	
3,55	
4,54	lev
4,78	
4,94	
5,27	
5,80	
5,91	lev
6,14	lev
6,63	
6,67	
6,89	
7,16	lev
9,11	
11,38	lev
12,99	
21,03	
	[L/m2] 1,51 1,56 1,64 1,91 2,03 2,39 2,45 3,16 3,30 3,55 4,54 4,78 4,94 5,27 5,80 5,91 6,14 6,63 6,67 6,89 7,16 9,11 11,38 12,99

Legenda:

cog = cogenerazione


N23 - XV - Anni 2010-2024

R

[%] Rapporto di riciclo (interno/esterno) delle acque reflue

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	98	100	99	101	97	97	99	98	100	101	100	100	101	101	101
2	133	111	112	112	113	113	113	122	121	118	118	123	116	114	113
3 (A+B)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

N 23 - XV - Anno 2024 -

R [%] - Rapporto di riciclo delle acque reflue (interno/esterno)

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[%]

100

Graduatoria

Graduatoria	Valori [%]	
1	95	cog + lev
2	100	cog
3	100	lev
4	100	cog
5	100	
6	100	cog + lev
7	100	cog
8	100	cog + lev
9	100	cog + lev
10	100	
11	100	cog
12	100	
13	100	cog
14	101	cog
15	102	cog + lev
16	103	
17	103	cog
18	106	cog
19	117	

Graduatoria	Valori [%]	
1	100	
2	100	·

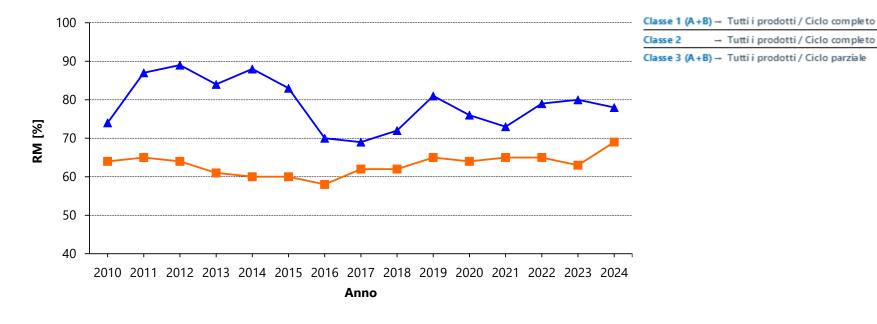
Graduatoria	Valori [%]	
1	100	cog + lev
2	100	cog + lev
3	100	cog
4	100	cog
5	100	cog
6	100	cog + lev
7	100	
8	100	cog + lev
9	100	cog
10	100	cog
11	102	lev
12	103	
13	104	
14	105	cog + lev
15	105	cog
16	105	cog
17	106	lev
18	107	cog
19	108	
20	108	cog + lev
21	108	cog + lev
22	109	lev
23	113	cog
24	116	cog
25	126	
26	137	cog
27	139	cog
28	140	cog + lev
29	166	cog
30	182	

Graduatoria	Valori [%]	
1	100	
2	100	
3	100	lev
4	100	lev
5	100	
6	100	
7	100	
8	100	
9	100	
10	100	
11	100	
12	100	
13	100	
14	100	lev
15	100	
16	100	
17	100	lev
18	100	
19	100	
20	100	
21	100	
22	100	lev
23	100	
24	100	
25	100	
26	100	

Legenda:

cog = cogenerazione

N24 - XV - Anni 2010-2024


RM

Copertura con acque reflue del fabbisogno idrico per la preparazione dell'impasto

→ Tutti i prodotti / Ciclo completo + atomizzato per terzi

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	74	87	89	84	88	83	70	69	72	81	76	73	79	80	78
2	64	65	64	61	60	60	58	62	62	65	64	65	65	63	69
3 (A+B)	n.d.														

N 24 - XV - Anno 2024 -

RM [%] - Copertura con acque reflue del fabbisogno idrico per la preparazione impasto

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

Valori

[%]

100

Graduatoria

Tutti i prodotti / ciclo completo + Atomizzato per terzi

Valori

3 A
Grès porcellanato /
ciclo parziale

3B
Altri prodotti /
ciclo parziale

ia	

Craduatoria	Valori	
Graduatoria	[%]	

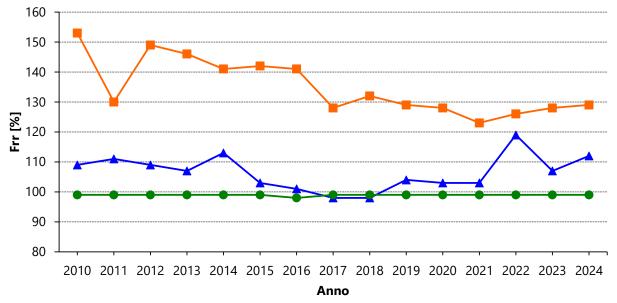
Valori Graduatoria [%]

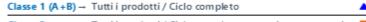
Graduatoria	Valori [%]	
1	33	cog + lev
2	41	cog + lev
3	55	
4	57	cog + lev
5	61	cog + lev
6	65	
7	79	
8	81	cog
9	82	cog
10	83	cog
11	86	cog
12	91	cog + lev
13	91	cog
14	93	cog
15	99	cog
16	99	
17	100	cog

Graduatori [%] 4 cog + lev 2 35 cog + lev 35 cog 3 36 cog + lev 4 40 cog + lev 5 49 cog 6 50 cog 7 53 8 54 lev 58 cog 10 62 cog + lev 11 12 63 cog 63 lev 13 66 14 69 cog 15 71 cog 16 73 lev 17 18 77 81 19 90 cog 20 91 cog 21 93 22 99 cog 23 100 24 25 100 cog 26 100 cog + lev 100 cog + lev 27 28 100 cog + lev

100 cog

29


cog = cogenerazione


N25 - XV- Anni 2010-2024

Frr [%] Fattore di riutilizzo (interno/esterno) dei rifiuti/residui

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	109	111	109	107	113	103	101	98	98	104	103	103	119	107	112
2	153	130	149	146	141	142	141	128	132	129	128	123	126	128	129
3 (A+B)	99	99	99	99	99	99	98	99	99	99	99	99	99	99	99

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 25 - XV - Anno 2024 -

Frr [%] - Fattore di riutilizzo dei rifiuti/residui (interno/esterno)

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B						
Altri prodotti /						
ciclo parziale						

Valori

[%]

Graduatoria

Graduatoria	Valori [%]	
1	99,4	cog + lev
2	99,4	
3	99,4	cog
4	99,5	
5	99,5	cog + lev
6	99,6	
7	99,6	lev
8	99,6	cog
9	99,7	cog
10	99,7	cog
11	99,8	cog + lev
12	100,0	
13	108,3	
14	108,7	cog + lev
15	113,2	cog
16	150,8	cog + lev
17	154,1	cog
18	154,2	cog
19	161,1	cog

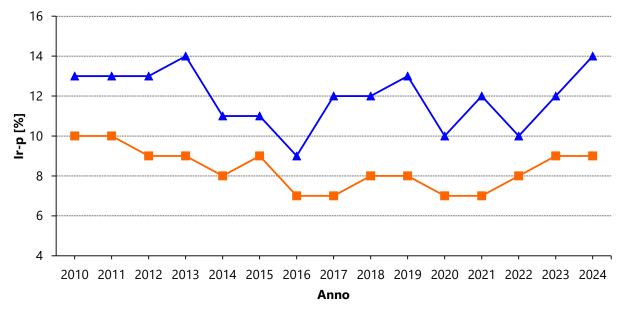
Graduatoria	Valori [%]	
1	99,2	

Graduatoria	Valori [%]	
1	99,3	cog
2	99,3	cog
3	99,5	cog
4	99,5	
5	99,6	cog + lev
6	99,6	cog + lev
7	99,7	cog + lev
8	99,9	cog + lev
9	99,9	cog
10	100,6	
11	100,8	
12	101,0	cog
13	103,5	
14	103,7	lev
15	105,5	cog
16	109,2	cog
17	112,2	cog
18	112,6	cog + lev
19	113,7	cog
20	115,7	
21	117,6	lev
22	122,7	cog + lev
23	124,6	cog
24	156,8	
25	167,6	cog
26	192,6	lev
27	210,9	cog
28	211,6	cog + lev
29	238,6	cog + lev
30	238,9	cog

Valori [%]	
97,7	
97,9	
98,6	
98,7	
99,0	
99,1	
99,1	
99,2	
99,2	
99,3	lev
99,4	lev
99,5	lev
99,5	
99,5	lev
99,5	lev
99,6	
99,6	
99,6	
99,7	
99,7	
99,7	
99,7	
99,8	
99,9	
100,0	
100,0	
	97,7 97,9 98,6 98,7 99,0 99,1 99,1 99,2 99,2 99,3 99,4 99,5 99,5 99,5 99,6 99,6 99,6 99,7 99,7 99,7 99,7 99,8 99,9 100,0

Legenda:

cog = cogenerazione


N26 - XV - Anni 2010-2024

Ir-p [%]

Incidenza dei rifiuti/residui sulla composizione dell'impasto

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	13	13	13	14	11	11	9	12	12	13	10	12	10	12	14
2	10	10	9	9	8	9	7	7	8	8	7	7	8	9	9
3 (A+B)	n.d.														

N 26 - XV - Anno 2024 -

Ir-p [%] - Incidenza dei rifiuti/residui su composizione impasto

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

Valori

[%]

15,6 47,1

Graduatoria

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A						
Grès porcellanato /						
ciclo parziale						

3B
Altri prodotti /
ciclo parziale

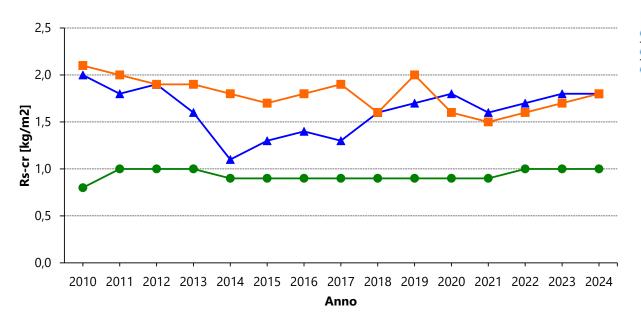
Graduatoria Valori [%]

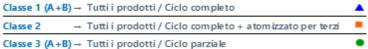
Graduatoria Valori
[%]

Graduatoria	Valori [%]	
1	4,4	cog + lev
2	4,8	cog
3	6,0	cog + lev
4	8,0	cog + lev
5	9,8	
6	10,6	cog
7	11,9	cog + lev
8	12,0	cog
9	12,8	cog
10	12,8	cog + lev
11	13,0	cog
12	13,1	cog
13	14,1	cog
14	14,3	cog
15	15,9	
16	17,2	
17	20,7	

Valori Graduatoria [%] 0,7 cog 2 2,2 cog 3,3 cog + lev 3 3,4 4 4,1 5 4,5 cog 6 6,1 cog + lev 7 6,3 cog 8 6,7 cog 6,9 cog + lev 10 7,0 11 12 7,1 cog 8,0 13 8,1 cog 14 8,5 15 8,5 cog 16 9,0 lev 17 9,1 cog + lev 18 9,6 cog 19 9,6 20 9,8 cog 21 10,6 lev 22 10,8 lev 23 12,5 cog + lev 24 25 12,8 cog + lev 14,8 cog 26 27 17,5 cog + lev 28 26,8 cog 28,2 cog + lev 29

Legenda:


cog = cogenerazione


N27 - XV - Anni 2010-2024

Rs-cr [kg/m²] Produzione specifica di scarto crudo

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	2,0	1,8	1,9	1,6	1,1	1,3	1,4	1,3	1,6	1,7	1,8	1,6	1,7	1,8	1,8
2	2,1	2,0	1,9	1,9	1,8	1,7	1,8	1,9	1,6	2,0	1,6	1,5	1,6	1,7	1,8
3 (A+B)	0,8	1,0	1,0	1,0	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	1,0	1,0	1,0

N 27 - XV - Anno 2024 -

Rs-cr [kg/m²] - Produzione specifica di scarto crudo

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[kg/m2]

0,37

Graduatoria

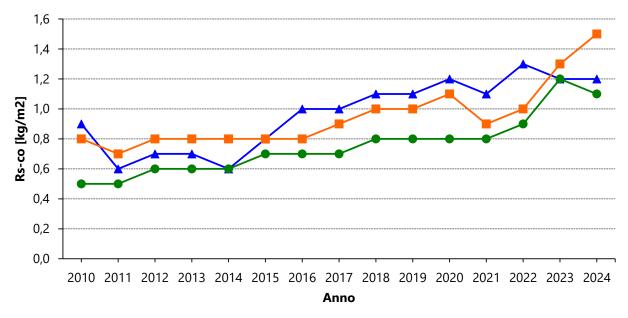
Graduatoria	Valori [kg/m2]	
1	0,62	cog + lev
2	0,66	cog
3	0,70	
4	0,79	cog
5	0,95	
6	0,95	cog
7	0,99	cog + lev
8	1,14	cog
9	1,36	cog + lev
10	1,38	cog + lev
11	1,66	cog
12	2,22	cog
13	2,43	lev
14	2,71	cog + lev
15	2,78	cog
16	3,15	
17	3,34	cog
18	3,52	
19	6,07	

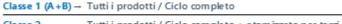
Graduatoria	Valori [kg/m2]	
1	0,27	
2	0,97	

Graduatoria	Valori [kg/m2]	
1	0,34	
2	0,46	cog
3	0,49	lev
4	0,53	cog + lev
5	0,63	cog
6	0,93	
7	0,97	cog + lev
8	0,99	
9	1,03	cog
10	1,04	cog
11	1,13	
12	1,37	cog
13	1,39	lev
14	1,40	cog
15	1,46	cog
16	1,57	cog
17	1,69	cog
18	1,82	cog + lev
19	1,96	cog + lev
20	1,97	cog + lev
21	2,07	cog
22	2,10	cog
23	2,24	cog + lev
24	2,79	
25	3,29	cog
26	3,29	cog
27	3,38	lev
28	3,40	cog + lev
29	4,60	
30	4,88	cog + lev

Graduatoria	Valori [kg/m2]	
1	0,08	
2	0,28	
3	0,35	
4	0,38	
5	0,43	
6	0,52	
7	0,59	
8	0,61	
9	0,63	
10	0,63	
11	0,64	lev
12	0,68	
13	0,75	
14	0,83	
15	0,84	
16	0,85	lev
17	1,00	
18	1,05	
19	1,06	
20	1,26	lev
21	1,52	
22	1,93	
23	2,03	
24	2,12	
25	3,24	lev
26	3,52	lev

Legenda:


cog = cogenerazione


N28 - XV - Anni 2010-2024

Rs-co [kg/m²] Produzione specifica di scarto cotto

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	0,9	0,6	0,7	0,7	0,6	0,8	1,0	1,0	1,1	1,1	1,2	1,1	1,3	1,2	1,2
2	0,8	0,7	0,8	0,8	0,8	0,8	0,8	0,9	1,0	1,0	1,1	0,9	1,0	1,3	1,5
3 (A+B)	0,5	0,5	0,6	0,6	0,6	0,7	0,7	0,7	0,8	0,8	0,8	0,8	0,9	1,2	1,1

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

Classe 3 (A+B) → Tutti i prodotti / Ciclo parziale

N 28 - XV - Anno 2024 -

Rs-co [kg/m²] - Produzione specifica di scarto cotto

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria	Valori [kg/m2]			
1	0,44	cog		
2	0,49	cog		
3	0,56	cog + lev		
4	0,62			
5	0,79	cog + lev		
6	0,85	cog + lev		
7	0,85	cog		
8	0,93	cog		
9	0,95	cog		
10	1,00	cog + lev		
11	1,00	lev		
12	12 1,00			
13	1,09	cog		
14	1,16	cog		
15	1,74	cog		
16	2,15			
17	2,27			
18	2,34			
19	2,44	cog + lev		

Graduatoria	Valori [kg/m2]	
1	0,27	
2	2,56	

Graduatoria	Valori [kg/m2]	
1	0,07	cog
2	0,22	
3	0,43	
4	0,50	cog
5	0,50	cog
6	0,58	lev
7	0,61	cog
8	0,70	cog + lev
9	0,71	cog
10	0,80	
11	0,81	cog + lev
12	0,85	cog
13	0,94	cog + lev
14	0,97	cog
15	1,13	
16	1,14	cog + lev
17	1,17	cog
18	1,24	cog
19	1,46	cog
20	1,67	cog + lev
21	1,73	lev
22	2,07	lev
23	2,18	cog
24	2,30	cog + lev
25	2,45	cog
26	3,01	cog + lev
27	3,14	
28	3,47	cog + lev
29	3,64	cog
30	4,20	

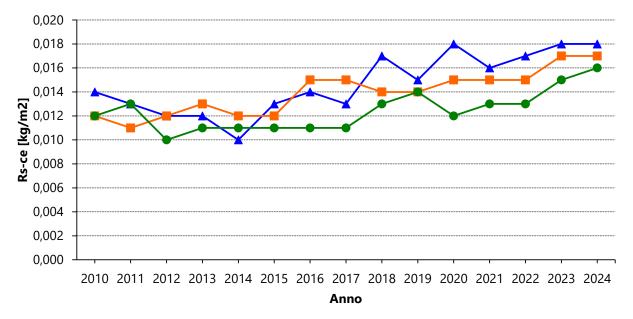
Graduatoria	Valori [kg/m2]	
1	0,02	
2	0,20	
3	0,21	
4	0,34	
5	0,36	
6	0,47	
7	0,52	
8	0,57	lev
9	0,62	
10	0,63	
11	0,69	
12	0,77	
13	1,00	
14	1,11	lev
15	1,25	
16	1,45	
17	1,54	lev
18	1,55	
19	1,69	
20	1,75	
21	1,79	lev
22	1,80	
23	1,93	
24	2,12	
25	2,19	
26	2,67	lev

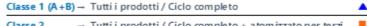
 Graduatoria
 Valori [kg/m2]

 1
 0,82

 2
 1,85

Legenda:


cog = cogenerazione


N29 - XV - Anni 2010-2024

Rs-ce [kg/m²] Produzione specifica di calce esausta

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	0,014	0,013	0,012	0,012	0,010	0,013	0,014	0,013	0,017	0,015	0,018	0,016	0,017	0,018	0,018
2	0,012	0,011	0,012	0,013	0,012	0,012	0,015	0,015	0,014	0,014	0,015	0,015	0,015	0,017	0,017
3 (A+B)	0,012	0,013	0,010	0,011	0,011	0,011	0,011	0,011	0,013	0,014	0,012	0,013	0,013	0,015	0,016

[→] Tutti i prodotti / Ciclo completo + atomizzato per terzi Classe 2

Classe 3 (A+B) → Tutti i prodotti / Ciclo parziale

N 29 - XV - Anno 2024 -

Rs-ce [kg/m²] - Produzione specifica di calce esausta

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria	Valori [kg/m2]	
1	0,006	
2	0,007	
3	0,010	cog + lev
4	0,011	cog
5	0,011	cog
6	0,014	cog
7	0,014	cog + lev
8	0,015	cog
9	0,015	cog + lev
10	0,015	cog + lev
11	0,016	cog + lev
12	0,017	cog
13	0,018	cog
14	0,018	lev
15	0,019	cog
16	0,019	
17	0,024	cog
18	0,031	
19	0,052	

Graduatoria	Valori [kg/m2]	
1	0,007	
2	0,028	

Graduatoria	Valori [kg/m2]	
1	0,009	cog
2	0,009	cog
3	0,010	cog + lev
4	0,010	cog
5	0,011	cog + lev
6	0,012	cog + lev
7	0,012	lev
8	0,013	lev
9	0,014	
10	0,014	cog + lev
11	0,014	cog
12	0,014	cog + lev
13	0,015	cog
14	0,015	
15	0,016	cog
16	0,016	cog
17	0,016	
18	0,017	cog
19	0,018	
20	0,020	lev
21	0,022	
22	0,022	cog
23	0,022	cog + lev
24	0,023	cog
25	0,024	cog + lev
26	0,024	cog
27	0,025	cog
28	0,026	cog
29	0,027	
30	0,028	cog + lev

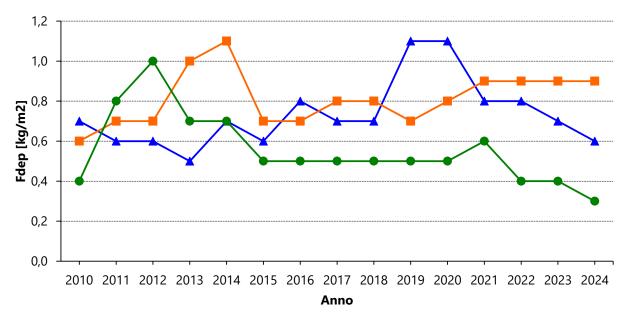
Graduatoria	Valori [kg/m2]	
1	0,007	
2	0,009	
3	0,010	
4	0,010	
5	0,011	
6	0,011	lev
7	0,012	
8	0,013	
9	0,014	
10	0,014	
11	0,015	
12	0,015	lev
13	0,016	
14	0,016	
15	0,016	
16	0,016	
17	0,017	lev
18	0,019	
19	0,019	
20	0,020	
21	0,020	
22	0,021	
23	0,028	
24	0,029	lev
25	0,029	
26	0,033	lev

1 0,007 2 0,014

Valori

Graduatoria

Legenda:


N30 - XV - Anni 2010-2024

[kg/m²] Fdep

Produzione specifica di fanghi da depurazione

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di		Anno													
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	0,7	0,6	0,6	0,5	0,7	0,6	0,8	0,7	0,7	1,1	1,1	0,8	0,8	0,7	0,6
2	0,6	0,7	0,7	1,0	1,1	0,7	0,7	0,8	0,8	0,7	0,8	0,9	0,9	0,9	0,9
3 (A+B)	0,4	0,8	1,0	0,7	0,7	0,5	0,5	0,5	0,5	0,5	0,5	0,6	0,4	0,4	0,3

→ Tutti i prodotti / Ciclo completo + atomizzato per terzi Classe 2

N 30 - XV - Anno 2024 -

Fdep [kg/m²] - Produzione specifica di fanghi da depurazione

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A
Grès porcellanato /
ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[kg/m2]

Graduatoria

Valori [kg/m2]	
0,019	cog
0,019	cog + lev
0,113	cog + lev
0,291	cog
0,293	cog
0,489	cog
0,515	
0,582	cog
0,615	cog + lev
0,821	lev
0,913	cog + lev
0,999	cog
	[kg/m2] 0,019 0,019 0,113 0,291 0,293 0,489 0,515 0,582 0,615 0,821 0,913

1,430

1,768 cog + lev

Graduatoria	Valori	
Gradatoria	[kg/m2]	
1	0,003	

Graduatoria	Valori [kg/m2]	
1	0,000	cog + lev
2	0,004	cog
3	0,007	cog
4	0,010	cog
5	0,013	cog
6	0,048	cog
7	0,056	cog + lev
8	0,495	
9	0,519	cog + lev
10	0,640	cog
11	0,654	cog
12	0,688	cog
13	0,825	lev
14	0,970	cog + lev
15	1,038	lev
16	1,056	lev
17	1,376	cog + lev
18	1,387	cog + lev
19	1,627	cog
20	2,082	cog + lev
21	4,672	cog + lev

Graduatoria	Valori [kg/m2]	
1	0,004	
2	0,038	
3	0,042	
4	0,061	lev
5	0,085	
6	0,096	
7	0,101	
8	0,109	
9	0,206	
10	0,282	lev
11	0,344	lev
12	0,465	lev
13	0,730	lev
14	1,305	
15	1,336	

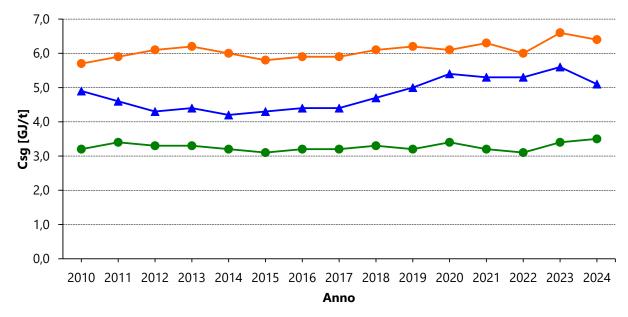
Legenda:

cog = cogenerazione

13

14

N31 - XV - Anni 2010-2024


Csg

[GJ/t]

Consumo specifico di gas naturale

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di		Anno													
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	4,9	4,6	4,3	4,4	4,2	4,3	4,4	4,4	4,7	5,0	5,4	5,3	5,3	5,6	5,1
2	5,7	5,9	6,1	6,2	6,0	5,8	5,9	5,9	6,1	6,2	6,1	6,3	6,0	6,6	6,4
3 (A+B)	3,2	3,4	3,3	3,3	3,2	3,1	3,2	3,2	3,3	3,2	3,4	3,2	3,1	3,4	3,5

N 31 - XV - Anno 2024 -

Csg [GJ/t] - Consumo specifico di gas naturale

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[GJ/t]

4,63

Graduatoria

Graduatoria	Valori [GJ/t]	
1	2,63	
2	2,88	
3	3,85	cog + lev
4	4,50	
5	4,83	cog
6	4,90	cog + lev
7	5,07	cog
8	5,11	cog + lev
9	5,13	lev
10	5,31	cog
11	5,56	cog
12	5,60	cog + lev
13	5,67	cog
14	5,82	cog + lev
15	5,98	cog
16	6,68	cog
17	6,68	cog
18	7,20	
19	7,50	

Graduatoria	Valori [GJ/t]	
1	2,53	
2	4,25	

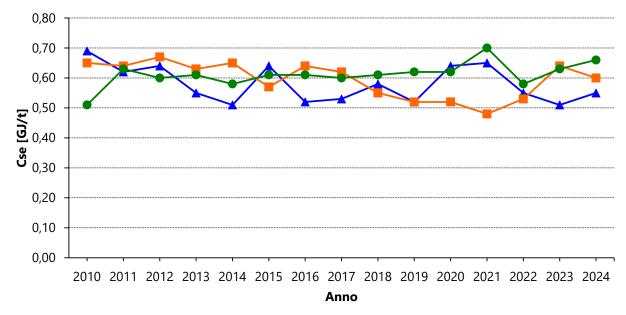
Graduatoria	Valori	
Gradatoria	[GJ/t]	
1	4,15	cog
2	4,23	cog
3	4,52	
4	4,68	lev
5	4,79	lev
6	4,84	cog
7	5,00	cog
8	5,14	cog
9	5,28	cog
10	5,33	cog + lev
11	5,34	
12	5,50	cog
13	5,61	lev
14	5,76	
15	5,95	cog
16	5,99	cog
17	5,99	cog
18	6,00	cog
19	6,01	cog
20	6,13	cog + lev
21	6,61	
22	6,68	cog + lev
23	7,24	cog + lev
24	7,30	cog + lev
25	7,49	cog + lev
26	7,63	cog + lev
27	8,69	
28	9,07	cog + lev
29	11,41	
30	13,55	cog

Valori [GJ/t]	
2,51	
2,53	
2,63	
2,68	
2,69	
2,72	
2,76	
2,79	
2,92	lev
2,95	lev
2,97	
3,03	lev
3,07	
3,11	
3,15	
3,17	
3,52	
3,60	
3,70	
3,71	
3,82	
4,23	-
4,43	
5,20	lev
5,25	lev
6,05	
	[GJ/t] 2,51 2,53 2,63 2,68 2,69 2,72 2,76 2,79 2,92 2,95 2,97 3,03 3,07 3,11 3,15 3,17 3,52 3,60 3,70 3,71 3,82 4,23 4,43 5,20 5,25

<u>Legenda:</u>

cog = cogenerazione

N32 - XV - Anni 2010-2024


Cse

[GJ/t]

Consumo specifico di energia elettrica

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di	Anno														
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	0,69	0,62	0,64	0,55	0,51	0,64	0,52	0,53	0,58	0,52	0,64	0,65	0,55	0,51	0,55
2	0,65	0,64	0,67	0,63	0,65	0,57	0,64	0,62	0,55	0,52	0,52	0,48	0,53	0,64	0,60
3 (A+B)	0,51	0,63	0,60	0,61	0,58	0,61	0,61	0,60	0,61	0,62	0,62	0,70	0,58	0,63	0,66

Classe 1 (A+B) → Tutti i prodotti / Ciclo completo

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 32 - XV - Anno 2024 -

Cse [GJ/t] - Consumo specifico di energia elettrica

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria	Valori [GJ/t]	
1	- 0,08	cog + lev
2	- 0,06	cog
3	- 0,03	cog
4	- 0,02	cog
5	0,02	cog + lev
6	0,12	cog
7	0,19	cog
8	0,20	cog
9	0,21	cog
10	0,24	cog
11	0,30	cog + lev
12	0,54	
13	0,58	
14	0,77	cog + lev
15	0,92	cog + lev
16	0,94	
17	1,19	lev
18	1,82	
19	2,70	

Graduatoria	Valori [GJ/t]	
1	0,40	
2	0,63	

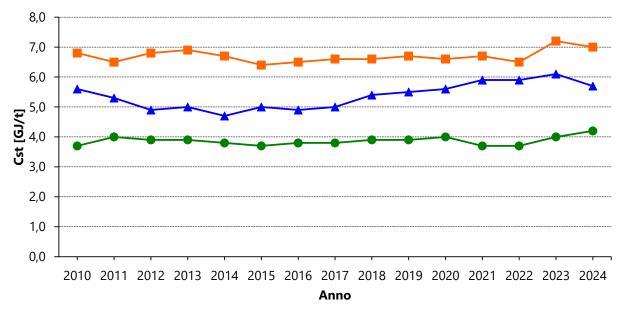
Graduatoria	Valori	
Gradautoria	[GJ/t]	
1	- 0,24	cog
2	- 0,14	cog
3	- 0,12	cog + lev
4	- 0,11	cog
5	- 0,00	
6	- 0,00	cog + lev
7	0,01	cog
8	0,03	cog + lev
9	0,12	cog + lev
10	0,14	cog
11	0,16	cog + lev
12	0,17	cog + lev
13	0,19	cog
14	0,20	cog
15	0,32	cog + lev
16	0,33	cog
17	0,42	cog
18	0,63	cog
19	0,64	
20	0,71	cog
21	0,75	lev
22	0,92	cog
23	1,03	lev
24	1,17	cog
25	1,17	
26	1,20	lev
27	1,34	cog + lev
28	1,37	
29	2,41	
30	3,18	

Graduatoria	Valori [GJ/t]	
1	0,05	
2	0,39	
3	0,41	
4	0,41	
5	0,41	
6	0,44	
7	0,46	
8	0,47	
9	0,49	
10	0,50	
11	0,52	
12	0,53	
13	0,55	
14	0,60	
15	0,62	
16	0,62	
17	0,63	lev
18	0,66	
19	0,66	
20	0,74	lev
21	0,75	lev
22	0,80	
23	0,99	
24	1,07	
25	1,42	lev
26	1,75	lev

Graduatoria	Valori [GJ/t]	
1	0,59	
2	1.02	

Legenda:

cog = cogenerazione


N33 - XV - Anni 2010-2024

Cst [GJ/t]

Consumo specifico totale di energia (termica+elettrica)

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di	Anno														
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	5,6	5,3	4,9	5,0	4,7	5,0	4,9	5,0	5,4	5,5	5,6	5,9	5,9	6,1	5,7
2	6,8	6,5	6,8	6,9	6,7	6,4	6,5	6,6	6,6	6,7	6,6	6,7	6,5	7,2	7,0
3 (A+B)	3,7	4,0	3,9	3,9	3,8	3,7	3,8	3,8	3,9	3,9	4,0	3,7	3,7	4,0	4,2

Classe 1 (A+B) → Tutti i prodotti / Ciclo completo

→ Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 33 - XV - Anno 2024 -

Cst [GJ/t] - Consumo specifico totale di energia (termica+elettrica)

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[GJ/t]

5,59

Graduatoria

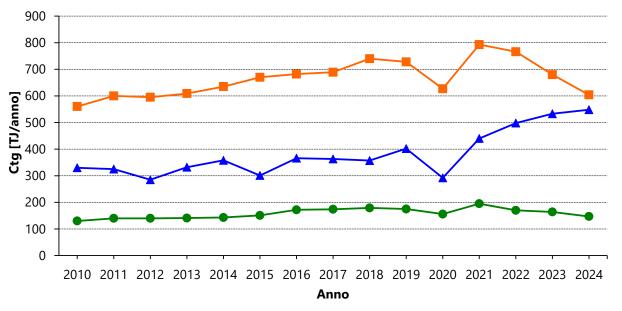
Graduatoria	Valori [GJ/t]	
1	3,17	
2	3,46	
3	4,77	cog + lev
4	5,02	cog
5	5,20	cog + lev
6	5,25	cog
7	5,32	cog
8	5,44	
9	5,52	cog + lev
10	5,65	cog
11	5,68	cog
12	5,84	cog + lev
13	5,88	cog + lev
14	6,17	cog
15	6,31	lev
16	6,65	cog
17	6,89	cog
18	9,02	
19	10,21	

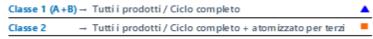
Graduatoria	Valori [GJ/t]	
1	2,93	
2	4,88	

Graduatoria	Valori [GJ/t]	
1		cog
2	4,93	cog
3	4,97	cog
4	5,16	cog
5	5,21	
6	5,39	cog
7	5,50	cog + lev
8	5,54	lev
9	5,71	lev
10	5,76	cog
11	5,76	
12	5,91	cog
13	6,01	cog
14	6,06	cog
15	6,17	cog
16	6,28	cog
17	6,29	cog + lev
18	6,43	cog
19	6,67	cog + lev
20	6,71	
21	6,80	lev
22	7,61	cog + lev
23	7,61	cog + lev
24	7,66	cog + lev
25	7,78	
26	8,58	cog + lev
27	8,95	cog + lev
28	11,10	
29	14,58	
30	14,72	cog

Valori [GJ/t]	
2,92	
2,94	
3,02	
3,13	
3,15	
3,20	
3,31	
3,32	
3,49	
3,55	lev
3,56	
3,70	lev
3,71	
3,72	
3,75	
3,76	
3,77	lev
3,99	
4,10	
4,36	
4,48	
5,03	
5,42	
6,63	lev
7,01	lev
7,12	
	[GJ/t] 2,92 2,94 3,02 3,13 3,15 3,20 3,31 3,32 3,49 3,55 3,56 3,70 3,71 3,72 3,75 3,76 3,77 3,99 4,10 4,36 4,48 5,03 5,42 6,63 7,01

Legenda:


cog = cogenerazione


N34 - XV- Anni 2010-2024

Ctg [TJ/anno] Consumo totale annuo di gas naturale

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di	e di Anno														
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	330	325	285	332	358	301	366	363	357	402	292	440	498	533	548
2	560	600	595	609	635	670	682	689	740	728	627	793	766	680	604
3 (A+B)	130	140	140	141	143	151	172	174	179	175	156	195	170	164	147

N 34 - XV - Anno 2024 -

Ctg [TJ/anno] - Consumo totale annuo di gas naturale

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria	Valori [TJ/anno]	
1	167,34	
2	227,22	cog
3	233,07	lev
4	269,69	cog
5	295,31	
6	357,76	
7	400,93	cog + lev
8	418,13	
9	419,42	cog + lev
10	440,64	
11	496,97	cog + lev
12	580,28	cog
13	645,32	cog
14	767,02	cog + lev
15	768,70	cog
16	786,06	cog + lev
17	789,26	cog
18	1.181,48	cog
19	1.905,77	cog

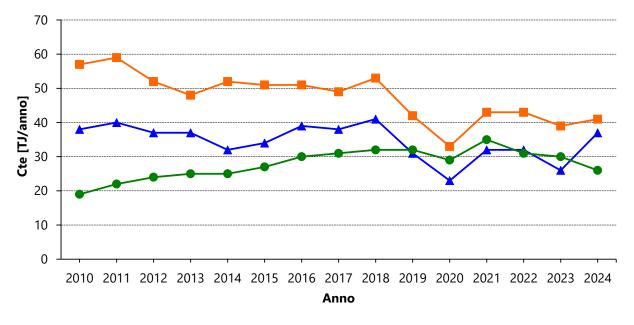
Graduatoria	Valori [TJ/anno]	
1	66,73	
2	282,83	

Graduatoria	Valori	
Graduatoria	[TJ/anno]	
1	24,15	
2	244,89	cog
3	268,54	cog
4	284,28	cog
5	329,75	lev
6	335,91	cog
7	341,00	cog + lev
8	373,69	
9	379,12	lev
10	406,58	
11	516,53	cog + lev
12	520,80	cog
13	547,82	lev
14	613,68	cog
15	613,88	cog
16	636,50	cog
17	654,09	cog + lev
18	659,17	
19	689,38	cog + lev
20	692,86	cog + lev
21	718,45	cog
22	748,45	cog
23	768,59	
24	796,32	cog + lev
25	847,54	cog + lev
26	860,36	cog
27	874,91	
28	1.054,86	cog
29	1.147,58	cog + lev
30	1.166,19	cog

Graduatoria	Valori [TJ/anno]	
1	41,10	
2	49,73	
3	70,58	
4	80,37	
5	81,00	
6	82,69	
7	86,08	
8	88,47	
9	89,93	
10	95,29	lev
11	98,65	
12	108,21	lev
13	126,91	
14	133,66	
15	140,99	
16	142,12	lev
17	159,18	
18	172,75	
19	175,34	
20	198,30	
21	211,52	
22	214,38	
23	232,84	lev
24	238,51	
25	245,96	lev
26	307,93	

Graduatoria	Valori [TJ/anno]	
1	45,71	
2	397.30	

<u>Legenda:</u>


cog = cogenerazione

N35 - XV - Anni 2010-2024

Cte [TJ/anno] Consumo totale annuo di energia elettrica

Andamento temporale del valore medio dell'indicatore nei 15 anni indicati

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	38	40	37	37	32	34	39	38	41	31	23	32	32	26	37
2	57	59	52	48	52	51	51	49	53	42	33	43	43	39	41
3 (A+B)	19	22	24	25	25	27	30	31	32	32	29	35	31	30	26

N 35 - XV - Anno 2024 -

Cte [TJ/anno] - Consumo totale annuo di energia elettrica

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria	Valori [TJ/anno]	
1	- 13,67	cog
2	- 10,80	cog + lev
3	- 2,90	cog
4	- 2,77	cog
5	2,82	cog + lev
6	7,40	cog
7	12,98	cog
8	20,50	cog
9	30,16	cog + lev
10	32,57	cog
11	41,42	cog
12	53,96	lev
13	60,24	
14	61,08	
15	63,14	cog + lev
16	72,14	
17	91,70	
18	95,81	cog + lev
19	105,55	

Graduatoria	Valori [TJ/anno]	
1	9,95	
2	44,14	

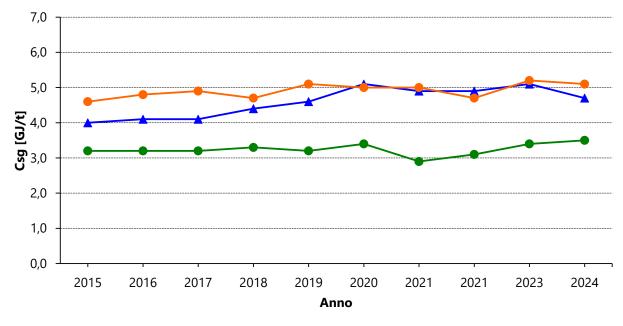
Graduatoria	Valori	
Graduatoria	[TJ/anno]	
1	- 28,69	cog
2	- 12,67	cog
3	- 9,12	cog
4	- 9,00	cog + lev
5	- 0,50	
6	- 0,38	cog + lev
7	3,05	cog + lev
8	3,65	cog
9	6,72	
10	8,16	cog + lev
11	11,98	cog + lev
12	16,31	cog + lev
13	25,04	cog
14	25,12	cog + lev
15	26,70	cog
16	29,40	cog
17	29,48	cog
18	49,82	cog + lev
19	51,14	cog
20	52,41	cog
21	53,15	cog
22	58,97	lev
23	64,51	cog
24	72,30	
25	72,64	lev
26	87,06	cog
27	93,17	
28	103,69	
29	116,93	lev
30	224,87	

Graduatoria	Valori [TJ/anno]	
1	2,62	
2	6,09	
3	8,85	
4	12,03	
5	13,05	
6	13,37	
7	13,93	
8	15,25	
9	15,85	
10	18,52	
11	19,81	
12	22,90	
13	24,11	lev
14	24,28	
15	24,64	
16	25,08	
17	25,95	
18	28,80	
19	31,52	
20	34,63	lev
21	36,16	lev
22	36,70	
23	41,11	
24	53,23	lev
25	61,18	
26	63,67	lev
16 17 18 19 20 21 22 23 24 25	25,08 25,95 28,80 31,52 34,63 36,16 36,70 41,11 53,23 61,18	lev

Graduatoria	Valori [TJ/anno]	
1	10,18	
2	51.03	

<u>Legenda:</u>

N31 - XV - Anni 2015-2023


Csg

[GJ/t]

Consumo specifico di gas naturale

Andamento temporale del valore medio dell'indicatore nei 10 anni indicati con il nuovo metodo di calcolo

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	-	-	-	1	-	4,0	4,1	4,1	4,4	4,6	5,1	4,9	4,9	5,1	4,7
2	1	-	1	1	-	4,6	4,8	4,9	4,7	5,1	5,0	5,0	4,7	5,2	5,1
3 (A+B)	1	-	-	-	-	3,2	3,2	3,2	3,3	3,2	3,4	2,9	3,1	3,4	3,5

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 31 - XV - Anno 2024 -

Csg [GJ/t] - Consumo specifico di gas naturale

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria	Valori [GJ/t]	
1	2,63	
2	2,88	
3	3,84	cog+lev
4	4,34	cog
5	4,37	cog+lev
6	4,39	cog
7	4,50	
8	4,63	cog+lev
9	4,64	cog
10	4,80	cog+lev
11	4,87	cog+lev
12	4,96	cog
13	4,98	cog
14	5,13	lev
15	5,44	cog
16	5,76	cog
17	5,82	cog
18	7,20	
19	7,50	

Graduatoria	Valori [GJ/t]	
1	2,53	
2	4,25	

Graduatoria	Valori [GJ/t]	
1	1,89	cog
2	3,14	cog
3	3,59	cog + lev
4	3,65	cog
5	3,85	
6	4,00	cog
7	4,00	lev
8	4,05	lev
9	4,11	cog
10	4,52	cog + lev
11	4,61	cog
12	4,62	cog
13	4,70	
14	4,73	cog
15	4,94	cog
16	5,03	cog
17	5,04	cog
18	5,10	
19	5,19	cog + lev
20	5,27	lev
21	5,50	cog
22	5,52	cog + lev
23	5,76	
24	5,88	cog + lev
25	6,09	cog + lev
26	6,29	cog + lev
27	6,54	
28	6,78	cog + lev
29	8,19	cog
30	10,84	

Valori [GJ/t]	
2,51	
2,53	
2,63	
2,68	
2,69	
2,72	
2,76	
2,79	
2,92	lev
2,95	lev
2,97	
3,03	lev
3,07	
3,11	
3,15	
3,17	
3,52	
3,60	
3,70	
3,71	
3,82	
4,23	
4,43	
5,20	lev
5,25	lev
6,05	
	[GJ/t] 2,51 2,53 2,63 2,68 2,69 2,72 2,76 2,79 2,95 2,97 3,03 3,07 3,11 3,15 3,17 3,52 3,60 3,70 3,71 3,82 4,23 4,43 5,20 5,25

 Graduatoria
 Valori [GJ/t]

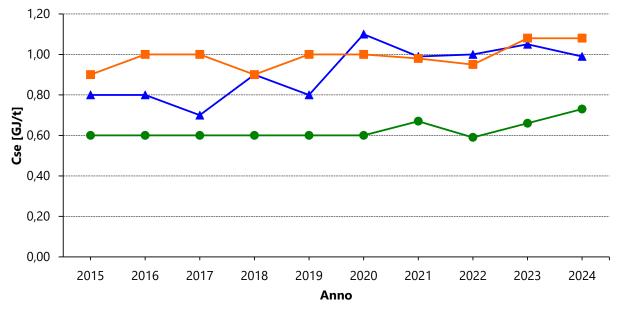
 1
 4,57

 2
 4,63

Legenda:

cog = cogenerazione

N32 - XV - Anni 2015-2023


Cse

[GJ/t]

Consumo specifico di energia elettrica

Andamento temporale del valore medio dell'indicatore nei 10 anni indicati con il nuovo metodo di calcolo

Classe di		Anno													
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	-	-	-	-	-	0,8	0,8	0,7	0,9	0,8	1,1	1,0	1,0	1,1	0,9
2	-	-	-	-	-	0,9	1,0	1,0	0,9	1,0	1,0	1,0	1,0	1,1	1,1
3 (A+B)	-	-	-	-	-	0,6	0,6	0,6	0,6	0,6	0,6	0,7	0,6	0,7	0,7

Classe 2 → Tutti i prodotti / Ciclo completo + atomizzato per terzi

N 32 - XV - Anno 2024 -

Cse [GJ/t] - Consumo specifico di energia elettrica

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[GJ/t]

1,02

Graduatoria

Graduatoria	Valori [GJ/t]	
1	0,54	
2	0,58	
3	0,71	cog
4	0,77	cog+lev
5	0,77	cog
6	0,80	cog
7	0,83	cog
8	0,85	cog+lev
9	0,90	cog
10	0,91	cog
11	0,92	cog+lev
12	0,93	cog+lev
13	0,94	
14	1,01	cog
15	1,06	cog
16	1,19	lev
17	1,31	cog+lev
18	1,82	
19	2,88	

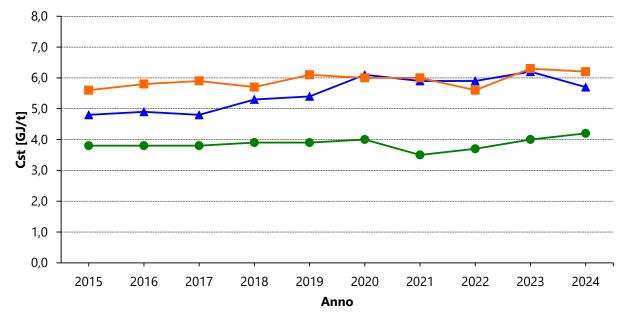
Graduatoria	Valori [GJ/t]	
1	0,40	
2	0,68	

Graduatoria	Valori [GJ/t]	
1	0,54	
2	0,59	cog
3	0,63	cog
4	0,63	cog
5	0,69	cog + lev
6	0,70	cog
7	0,71	lev
8	0,75	cog
9	0,80	cog + lev
10	0,80	cog
11	0,83	
12	0,89	lev
13	0,92	cog
14	0,93	cog + lev
15	0,93	cog
16	0,96	cog
17	0,97	cog
18	1,12	lev
19	1,13	cog
20	1,14	cog + lev
21	1,25	cog
22	1,30	cog + lev
23	1,32	
24	1,34	cog + lev
25	1,34	
26	1,37	cog + lev
27	1,38	cog + lev
28	1,62	cog
29	1,73	
30	3,10	

Graduatoria	Valori [GJ/t]	
1	0,41	
2	0,41	
3	0,44	
4	0,46	
5	0,47	
6	0,49	
7	0,50	
8	0,51	
9	0,52	
10	0,53	
11	0,54	
12	0,60	
13	0,61	
14	0,62	
15	0,62	
16	0,63	lev
17	0,66	
18	0,75	lev
19	0,77	lev
20	0,80	
21	0,88	
22	0,99	
23	1,17	
24	1,31	
25	1,42	lev
26	1,76	lev

Legenda:

cog = cogenerazione


N33 - XV - Anni 2015-2023

Cst [GJ/t]

Consumo specifico totale di energia (termica+elettrica)

Andamento temporale del valore medio dell'indicatore nei 10 anni indicati con il nuovo metodo di calcolo

Classe di		Anno													
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	-	-	1	1	-	4,8	4,9	4,8	5,3	5,4	6,1	5,9	5,9	6,2	5,7
2	-	-	-	1	-	5,6	5,8	5,9	5,7	6,1	6,0	6,0	5,6	6,3	6,2
3 (A+B)	-	-	-	-	-	3,8	3,8	3,8	3,9	3,9	4,0	3,5	3,7	4,0	4,2

N 33 - XV - Anno 2024 -

Cst [GJ/t] - Consumo specifico totale di energia (termica+elettrica)

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Valori

[GJ/t]

5,22 lev 5,59

Graduatoria

Graduatoria	Valori [GJ/t]	
1	3,17	
2	3,46	
3	4,76	cog+lev
4	5,10	cog
5	5,30	cog+lev
6	5,40	cog
7	5,42	cog
8	5,44	
9	5,63	cog+lev
10	5,65	cog+lev
11	5,78	cog
12	5,79	cog
13	5,94	cog+lev
14	6,31	lev
15	6,34	cog
16	6,67	cog
17	6,83	cog
18	9,02	
19	10,38	

Graduatoria	Valori [GJ/t]	
1	2,93	
2	4,92	

Graduatoria	Valori [GJ/t]	
1	2,53	cog
2	3,73	cog
3	4,28	cog
4	4,39	cog + lev
5	4,40	
6	4,71	lev
7	4,86	cog
8	4,94	lev
9	4,96	cog
10	5,20	cog + lev
11	5,31	cog
12	5,65	cog
13	5,84	cog
14	5,87	cog
15	5,87	cog
16	6,16	cog
17	6,39	lev
18	6,44	
19	6,44	
20	6,45	cog + lev
21	6,47	cog
22	6,57	cog + lev
23	6,59	
24	7,02	cog + lev
25	7,40	cog + lev
26	7,63	cog + lev
27	7,85	
28	8,15	cog + lev
29	9,81	cog
30	13,94	

Graduatoria	Valori [GJ/t]	
1	2,94	
2	2,97	
3	3,13	
4	3,14	
5	3,20	
6	3,22	
7	3,31	
8	3,32	
9	3,49	
10	3,55	lev
11	3,56	
12	3,70	lev
13	3,72	
14	3,75	
15	3,80	lev
16	3,99	
17	4,21	
18	4,21	
19	4,36	
20	4,48	
21	4,70	
22	5,03	
23	5,42	
24	6,63	lev
25	7,01	lev
26	7,22	

<u>Legenda:</u>

cog = cogenerazione

N34 - XV - Anni 2015-2023

Ctg [TJ/anno] Consumo totale annuo di gas naturale

Andamento temporale del valore medio dell'indicatore nei 10 anni indicati con il nuovo metodo di calcolo

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	-	-	-	1	-	282	341	336	334	368	263	398	447	473	497
2	-	-	1	-	-	531	580	564	582	579	512	655	615	555	488
3 (A+B)	1	-	-	-	-	151	172	174	179	175	162	184	170	164	147

N 34 - XV - Anno 2024 -

Ctg [TJ/anno] - Consumo totale annuo di gas naturale

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

2 Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B
Altri prodotti /
ciclo parziale

Graduatoria	Valori [TJ/anno]	
1	167,34	
2	206,91	cog
3	231,02	cog
4	233,07	lev
5	295,31	
6	357,76	
7	380,42	cog+lev
8	399,65	cog+lev
9	418,13	
10	440,64	
11	443,04	cog+lev
12	505,39	cog
13	556,35	cog
14	648,36	cog+lev
15	666,66	cog+lev
16	673,11	cog
17	718,01	cog
18	1.032,44	cog
19	1.706,07	cog

Graduatoria	Valori [TJ/anno]	
1	66,73	
2	282,83	

Graduatoria	Valori	
Graduatoria	[TJ/anno]	
1	22,95	
2	96,25	cog
3	202,27	
4	233,68	cog
5	240,90	cog
6	255,86	cog
7	285,54	lev
8	296,09	cog + lev
9	316,61	lev
10	370,91	cog + lev
11	371,06	cog
12	373,49	cog
13	402,32	
14	405,58	cog + lev
15	449,49	cog
16	497,95	cog
17	515,03	lev
18	518,39	cog + lev
19	562,18	
20	565,47	cog
21	573,04	cog + lev
22	576,64	cog + lev
23	604,50	cog
24	673,20	cog + lev
25	768,59	
26	789,81	cog
27	836,21	
28	897,08	cog
29	957,87	cog + lev
30	967,41	cog

Graduatoria	Valori [TJ/anno]	
1	41,10	
2	49,73	
3	70,58	
4	80,37	
5	81,00	
6	82,69	
7	86,08	
8	88,47	
9	89,93	
10	95,29	lev
11	98,65	
12	108,21	lev
13	126,91	
14	133,66	
15	140,99	
16	142,12	lev
17	159,18	
18	172,75	
19	175,34	
20	198,30	
21	211,52	
22	214,38	
23	232,84	lev
24	238,51	
25	245,96	lev
26	307,93	

Graduatoria	Valori [TJ/anno]	
1	45,71	
2	397,30	

<u>Legenda:</u>

cog = cogenerazione

N35 - XV - Anni 2015-2023

Cte

[TJ/anno] Consumo totale annuo di energia elettrica

Andamento temporale del valore medio dell'indicatore nei 10 anni indicati con il nuovo metodo di calcolo

Classe di								Anno							
Prodotto / ciclo	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1 (A+B)	-	-	-	-	-	51	65	61	65	66	51	74	83	87	93
2	1	-	1	-	-	103	112	109	111	110	98	123	117	107	96
3 (A+B)	-	-	-	-	-	27	31	31	32	32	30	33	31	31	30

N 35 - XV - Anno 2024 -

Cte [TJ/anno] - Consumo totale annuo di energia elettrica

1A Grès porcellanato / ciclo completo

1B Altri prodotti / ciclo completo

Tutti i prodotti / ciclo completo + Atomizzato per terzi

3A Grès porcellanato / ciclo parziale

3B				
Altri prodotti /				
ciclo parziale				

Valori

[TJ/anno]

51,03

Graduatoria

Graduatoria	Valori [TJ/anno]	
1	34,11	cog
2	53,96	lev
3	56,15	cog
4	61,08	
5	64,17	
6	72,14	
7	87,77	cog
8	88,25	cog
9	91,70	
10	94,21	cog+lev
11	95,81	cog+lev
12	105,27	cog+lev
13	105,55	
14	107,45	cog+lev
15	112,82	cog
16	115,06	cog+lev
17	115,72	cog
18	171,97	cog
19	273,92	cog

Graduatoria	Valori [TJ/anno]	
1	10,62	
2	44,14	

Graduatoria	Valori [TJ/anno]	
1	6,56	
2	32,29	cog
3	46,72	cog
4	52,30	cog
5	56,02	lev
6	62,37	lev
7	63,23	cog + lev
8	68,98	cog
9	70,72	cog
10	73,55	cog
11	74,43	
12	78,19	cog
13	78,64	cog + lev
14	79,33	
15	80,96	
16	82,11	cog + lev
17	85,41	cog
18	95,35	cog
19	96,23	cog + lev
20	102,24	cog + lev
21	104,38	cog + lev
22	109,55	lev
23	110,54	
24	120,07	cog
25	139,40	cog
26	152,80	cog + lev
27	163,74	cog
28	182,36	cog
29	205,06	cog + lev
30	220,29	

Graduatoria	Valori [TJ/anno]		
1	7,93		
2	8,85		
3	12,03		
4	13,05		
5	13,37		
6	15,85		
7	16,58		
8	18,61		
9	19,81		
10	22,64		
11	22,90		
12	24,11	lev	
13	24,28		
14	24,64		
15	25,08		
16	25,95		
17	28,27		
18	31,52		
19	32,36		
20	35,91	lev	
21	36,36	lev	
22	42,90		
23	53,23	lev	
24	61,18		
25	63,67	lev	
26	98,83		

Legenda:

cog = cogenerazione